Statistics for Finance

Statistics for Finance
Title Statistics for Finance PDF eBook
Author Erik Lindström
Publisher CRC Press
Pages 384
Release 2018-09-03
Genre Business & Economics
ISBN 1315362554

Download Statistics for Finance Book in PDF, Epub and Kindle

Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.

A Course on Statistics for Finance

A Course on Statistics for Finance
Title A Course on Statistics for Finance PDF eBook
Author Stanley L. Sclove
Publisher CRC Press
Pages 281
Release 2012-12-06
Genre Business & Economics
ISBN 1439892547

Download A Course on Statistics for Finance Book in PDF, Epub and Kindle

Taking a data-driven approach, A Course on Statistics for Finance presents statistical methods for financial investment analysis. The author introduces regression analysis, time series analysis, and multivariate analysis step by step using models and methods from finance. The book begins with a review of basic statistics, including descriptive statistics, kinds of variables, and types of data sets. It then discusses regression analysis in general terms and in terms of financial investment models, such as the capital asset pricing model and the Fama/French model. It also describes mean-variance portfolio analysis and concludes with a focus on time series analysis. Providing the connection between elementary statistics courses and quantitative finance courses, this text helps both existing and future quants improve their data analysis skills and better understand the modeling process.

Probability and Statistics for Finance

Probability and Statistics for Finance
Title Probability and Statistics for Finance PDF eBook
Author Svetlozar T. Rachev
Publisher John Wiley & Sons
Pages 676
Release 2010-07-30
Genre Business & Economics
ISBN 0470906324

Download Probability and Statistics for Finance Book in PDF, Epub and Kindle

A comprehensive look at how probability and statistics is applied to the investment process Finance has become increasingly more quantitative, drawing on techniques in probability and statistics that many finance practitioners have not had exposure to before. In order to keep up, you need a firm understanding of this discipline. Probability and Statistics for Finance addresses this issue by showing you how to apply quantitative methods to portfolios, and in all matter of your practices, in a clear, concise manner. Informative and accessible, this guide starts off with the basics and builds to an intermediate level of mastery. • Outlines an array of topics in probability and statistics and how to apply them in the world of finance • Includes detailed discussions of descriptive statistics, basic probability theory, inductive statistics, and multivariate analysis • Offers real-world illustrations of the issues addressed throughout the text The authors cover a wide range of topics in this book, which can be used by all finance professionals as well as students aspiring to enter the field of finance.

Statistics and Data Analysis for Financial Engineering

Statistics and Data Analysis for Financial Engineering
Title Statistics and Data Analysis for Financial Engineering PDF eBook
Author David Ruppert
Publisher Springer
Pages 736
Release 2015-04-21
Genre Business & Economics
ISBN 1493926144

Download Statistics and Data Analysis for Financial Engineering Book in PDF, Epub and Kindle

The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.

Statistics of Financial Markets

Statistics of Financial Markets
Title Statistics of Financial Markets PDF eBook
Author Szymon Borak
Publisher Springer Science & Business Media
Pages 266
Release 2013-01-11
Genre Business & Economics
ISBN 3642339298

Download Statistics of Financial Markets Book in PDF, Epub and Kindle

Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.

Statistical Analysis of Financial Data in S-Plus

Statistical Analysis of Financial Data in S-Plus
Title Statistical Analysis of Financial Data in S-Plus PDF eBook
Author René Carmona
Publisher Springer Science & Business Media
Pages 456
Release 2006-04-18
Genre Business & Economics
ISBN 0387218246

Download Statistical Analysis of Financial Data in S-Plus Book in PDF, Epub and Kindle

This is the first book at the graduate textbook level to discuss analyzing financial data with S-PLUS. Its originality lies in the introduction of tools for the estimation and simulation of heavy tail distributions and copulas, the computation of measures of risk, and the principal component analysis of yield curves. The book is aimed at undergraduate students in financial engineering; master students in finance and MBA's, and to practitioners with financial data analysis concerns.

Financial Statistics and Data Analytics

Financial Statistics and Data Analytics
Title Financial Statistics and Data Analytics PDF eBook
Author Shuangzhe Li
Publisher MDPI
Pages 232
Release 2021-03-02
Genre Business & Economics
ISBN 3039439758

Download Financial Statistics and Data Analytics Book in PDF, Epub and Kindle

Modern financial management is largely about risk management, which is increasingly data-driven. The problem is how to extract information from the data overload. It is here that advanced statistical and machine learning techniques can help. Accordingly, finance, statistics, and data analytics go hand in hand. The purpose of this book is to bring the state-of-art research in these three areas to the fore and especially research that juxtaposes these three.