Statistical Theories and Computational Approaches to Turbulence

Statistical Theories and Computational Approaches to Turbulence
Title Statistical Theories and Computational Approaches to Turbulence PDF eBook
Author Y. Kaneda
Publisher Springer Science & Business Media
Pages 409
Release 2013-03-09
Genre Technology & Engineering
ISBN 4431670025

Download Statistical Theories and Computational Approaches to Turbulence Book in PDF, Epub and Kindle

This volume contains the papers presented at the workshop on Statistical The ories and Computational Approaches to Turbulence: Modern Perspectives and Applications to Global-Scale Flows, held October 10-13, 2001, at Nagoya Uni versity, Nagoya, Japan. Because of recent developments in computational capabilities, the compu tational approach is showing the potential to resolve a much wider range of length and time scales in turbulent physical systems. Nevertheless, even with the largest supercomputers of the foreseeable future, development of adequate modeling techniques for at least some scales of motion will be necessary for practical computations of important problems such as weather forecasting and the prediction and control of global pollution. The more powerful the available machines become, the more demand there will be for precise prediction of the systems. This means that more precise and reliable knowledge of the underlying dynamics will become important, and that more efficient and precise numerical methods best adapted to the new generation of computers will be necessary. The understanding of the nature of unresolved scales then will playa key role in the modeling of turbulent motion. The challenge to turbulence theory here is to elucidate the physics or dynamics of those scales, in particular their sta tistical aspects, and thereby develop models on sound bases to reduce modeling ambiguity. The challenge to the computational method is to develop efficient algorithms suitable for the problems, the machines, and the developed models.

Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows
Title Statistical Theory and Modeling for Turbulent Flows PDF eBook
Author P. A. Durbin
Publisher Wiley-Blackwell
Pages 312
Release 2001-03-12
Genre Mathematics
ISBN

Download Statistical Theory and Modeling for Turbulent Flows Book in PDF, Epub and Kindle

Most natural and industrial flows are turbulent. The atmosphere and oceans, automobile and aircraft engines, all provide examples of this ubiquitous phenomenon. In recent years, turbulence has become a very lively area of scientific research and application, and this work offers a grounding in the subject of turbulence, developing both the physical insight and the mathematical framework needed to express the theory. Providing a solid foundation in the key topics in turbulence, this valuable reference resource enables the reader to become a knowledgeable developer of predictive tools. This central and broad ranging topic would be of interest to graduate students in a broad range of subjects, including aeronautical and mechanical engineering, applied mathematics and the physical sciences. The accompanying solutions manual to the text also makes this a valuable teaching tool for lecturers and for practising engineers and scientists in computational and experimental and experimental fluid dynamics.

Statistical Theory and Modeling for Turbulent Flows

Statistical Theory and Modeling for Turbulent Flows
Title Statistical Theory and Modeling for Turbulent Flows PDF eBook
Author P. A. Durbin
Publisher John Wiley & Sons
Pages 347
Release 2011-06-28
Genre Science
ISBN 1119957524

Download Statistical Theory and Modeling for Turbulent Flows Book in PDF, Epub and Kindle

Providing a comprehensive grounding in the subject of turbulence, Statistical Theory and Modeling for Turbulent Flows develops both the physical insight and the mathematical framework needed to understand turbulent flow. Its scope enables the reader to become a knowledgeable user of turbulence models; it develops analytical tools for developers of predictive tools. Thoroughly revised and updated, this second edition includes a new fourth section covering DNS (direct numerical simulation), LES (large eddy simulation), DES (detached eddy simulation) and numerical aspects of eddy resolving simulation. In addition to its role as a guide for students, Statistical Theory and Modeling for Turbulent Flows also is a valuable reference for practicing engineers and scientists in computational and experimental fluid dynamics, who would like to broaden their understanding of fundamental issues in turbulence and how they relate to turbulence model implementation. Provides an excellent foundation to the fundamental theoretical concepts in turbulence. Features new and heavily revised material, including an entire new section on eddy resolving simulation. Includes new material on modeling laminar to turbulent transition. Written for students and practitioners in aeronautical and mechanical engineering, applied mathematics and the physical sciences. Accompanied by a website housing solutions to the problems within the book.

Statistical Theories of Turbulence

Statistical Theories of Turbulence
Title Statistical Theories of Turbulence PDF eBook
Author Chia-Ch'iao Lin
Publisher Princeton University Press
Pages 68
Release 2017-03-14
Genre Science
ISBN 1400886899

Download Statistical Theories of Turbulence Book in PDF, Epub and Kindle

Part of the Princeton Aeronautical Paperback series designed to bring to students and research engineers outstanding portions of the twelve-volume High Speed Aerodynamics and Jet Propulsion series. These books have been prepared by direct reproduction of the text from the original series and no attempt has been made to provide introductory material or to eliminate cross reference to other portions of the original volumes. Originally published in 1961. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Statistical Turbulence Modelling For Fluid Dynamics - Demystified: An Introductory Text For Graduate Engineering Students

Statistical Turbulence Modelling For Fluid Dynamics - Demystified: An Introductory Text For Graduate Engineering Students
Title Statistical Turbulence Modelling For Fluid Dynamics - Demystified: An Introductory Text For Graduate Engineering Students PDF eBook
Author Michael Leschziner
Publisher World Scientific
Pages 424
Release 2015-08-20
Genre Science
ISBN 1783266635

Download Statistical Turbulence Modelling For Fluid Dynamics - Demystified: An Introductory Text For Graduate Engineering Students Book in PDF, Epub and Kindle

This book is intended for self-study or as a companion of lectures delivered to post-graduate students on the subject of the computational prediction of complex turbulent flows. There are several books in the extensive literature on turbulence that deal, in statistical terms, with the phenomenon itself, as well its many manifestations in the context of fluid dynamics. Statistical Turbulence Modelling for Fluid Dynamics — Demystified differs from these and focuses on the physical interpretation of a broad range of mathematical models used to represent the time-averaged effects of turbulence in computational prediction schemes for fluid flow and related transport processes in engineering and the natural environment. It dispenses with complex mathematical manipulations and instead gives physical and phenomenological explanations. This approach allows students to gain a 'feel' for the physical fabric represented by the mathematical structure that describes the effects of turbulence and the models embedded in most of the software currently used in practical fluid-flow predictions, thus counteracting the ill-informed black-box approach to turbulence modelling. This is done by taking readers through the physical arguments underpinning exact concepts, the rationale of approximations of processes that cannot be retained in their exact form, and essential calibration steps to which the resulting models are subjected by reference to theoretically established behaviour of, and experimental data for, key canonical flows.

Statistical Theories of Turbulence

Statistical Theories of Turbulence
Title Statistical Theories of Turbulence PDF eBook
Author Chia-Chiao Lin
Publisher
Pages 0
Release 1961
Genre Turbulence
ISBN 9780598269362

Download Statistical Theories of Turbulence Book in PDF, Epub and Kindle

Advanced Approaches in Turbulence

Advanced Approaches in Turbulence
Title Advanced Approaches in Turbulence PDF eBook
Author Paul Durbin
Publisher Elsevier
Pages 554
Release 2021-07-24
Genre Technology & Engineering
ISBN 0128208902

Download Advanced Approaches in Turbulence Book in PDF, Epub and Kindle

Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. Covers the fundamentals of turbulence updated with recent developments Focuses on hybrid methods such as DES and wall-modeled LES Gives an updated treatment of numerical simulation and data analysis