Statistical Programming in SAS
Title | Statistical Programming in SAS PDF eBook |
Author | A. John Bailer |
Publisher | CRC Press |
Pages | 378 |
Release | 2020-01-28 |
Genre | Business & Economics |
ISBN | 1000734927 |
Statistical Programming in SAS Second Edition provides a foundation for programming to implement statistical solutions using SAS, a system that has been used to solve data analytic problems for more than 40 years. The author includes motivating examples to inspire readers to generate programming solutions. Upper-level undergraduates, beginning graduate students, and professionals involved in generating programming solutions for data-analytic problems will benefit from this book. The ideal background for a reader is some background in regression modeling and introductory experience with computer programming. The coverage of statistical programming in the second edition includes Getting data into the SAS system, engineering new features, and formatting variables Writing readable and well-documented code Structuring, implementing, and debugging programs that are well documented Creating solutions to novel problems Combining data sources, extracting parts of data sets, and reshaping data sets as needed for other analyses Generating general solutions using macros Customizing output Producing insight-inspiring data visualizations Parsing, processing, and analyzing text Programming solutions using matrices and connecting to R Processing text Programming with matrices Connecting SAS with R Covering topics that are part of both base and certification exams.
Statistical Programming with SAS/IML Software
Title | Statistical Programming with SAS/IML Software PDF eBook |
Author | Rick Wicklin |
Publisher | SAS Institute |
Pages | 581 |
Release | 2010-10-22 |
Genre | Computers |
ISBN | 1629592552 |
SAS/IML software is a powerful tool for data analysts because it enables implementation of statistical algorithms that are not available in any SAS procedure. Rick Wicklin's Statistical Programming with SAS/IML Software is the first book to provide a comprehensive description of the software and how to use it. He presents tips and techniques that enable you to use the IML procedure and the SAS/IML Studio application efficiently. In addition to providing a comprehensive introduction to the software, the book also shows how to create and modify statistical graphs, call SAS procedures and R functions from a SAS/IML program, and implement such modern statistical techniques as simulations and bootstrap methods in the SAS/IML language. Written for data analysts working in all industries, graduate students, and consultants, Statistical Programming with SAS/IML Software includes numerous code snippets and more than 100 graphs. This book is part of the SAS Press program.
SAS Programming for R Users
Title | SAS Programming for R Users PDF eBook |
Author | Jordan Bakerman |
Publisher | |
Pages | 258 |
Release | 2019-12-09 |
Genre | Computers |
ISBN | 9781642957150 |
SAS Programming for R Users, based on the free SAS Education course of the same name, is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS that replicate familiar functions and capabilities in R. This book covers a wide range of topics including the basics of the SAS programming language, how to import data, how to create new variables, random number generation, linear modeling, Interactive Matrix Language (IML), and many other SAS procedures. This book also explains how to write R code directly in the SAS code editor for seamless integration between the two tools. Exercises are provided at the end of each chapter so that you can test your knowledge and practice your programming skills.
Statistical Data Analysis Using SAS
Title | Statistical Data Analysis Using SAS PDF eBook |
Author | Mervyn G. Marasinghe |
Publisher | Springer |
Pages | 688 |
Release | 2018-04-12 |
Genre | Computers |
ISBN | 3319692399 |
The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.
SAS Statistics by Example
Title | SAS Statistics by Example PDF eBook |
Author | Ron Cody, EdD |
Publisher | SAS Institute |
Pages | 275 |
Release | 2011-08-22 |
Genre | Computers |
ISBN | 1612900127 |
In SAS Statistics by Example, Ron Cody offers up a cookbook approach for doing statistics with SAS. Structured specifically around the most commonly used statistical tasks or techniques--for example, comparing two means, ANOVA, and regression--this book provides an easy-to-follow, how-to approach to statistical analysis not found in other books. For each statistical task, Cody includes heavily annotated examples using ODS Statistical Graphics procedures such as SGPLOT, SGSCATTER, and SGPANEL that show how SAS can produce the required statistics. Also, you will learn how to test the assumptions for all relevant statistical tests. Major topics featured include descriptive statistics, one- and two-sample tests, ANOVA, correlation, linear and multiple regression, analysis of categorical data, logistic regression, nonparametric techniques, and power and sample size. This is not a book that teaches statistics. Rather, SAS Statistics by Example is perfect for intermediate to advanced statistical programmers who know their statistics and want to use SAS to do their analyses. This book is part of the SAS Press program.
Handbook of SAS® DATA Step Programming
Title | Handbook of SAS® DATA Step Programming PDF eBook |
Author | Arthur Li |
Publisher | CRC Press |
Pages | 278 |
Release | 2013-04-10 |
Genre | Mathematics |
ISBN | 1466552387 |
To write an accomplished program in the DATA step of SAS®, programmers must understand programming logic and know how to implement and even create their own programming algorithm. Handbook of SAS® DATA Step Programming shows readers how best to manage and manipulate data by using the DATA step. The book helps novices avoid common mistakes resulting from a lack of understanding fundamental and unique SAS programming concepts. It explains that learning syntax does not solve all problems; rather, a thorough comprehension of SAS processing is needed for successful programming. The author also guides readers through a programming task. In most of the examples, the author first presents strategies and steps for solving the problem, then offers a solution, and finally gives a more detailed explanation of the solution. Understanding the DATA steps, particularly the program data vector (PDV), is critical to proper data manipulation and management in SAS. This book helps SAS programmers thoroughly grasp the concept of DATA step processing and write accurate programs in the DATA step. Numerous supporting materials, including data sets and programs used in the text, are available on the book’s CRC Press web page.
Practical Statistical Methods
Title | Practical Statistical Methods PDF eBook |
Author | Lakshmi Padgett |
Publisher | CRC Press |
Pages | 307 |
Release | 2011-04-25 |
Genre | Mathematics |
ISBN | 1439812829 |
Practical Statistical Methods: A SAS Programming Approach presents a broad spectrum of statistical methods useful for researchers without an extensive statistical background. In addition to nonparametric methods, it covers methods for discrete and continuous data. Omitting mathematical details and complicated formulae, the text provides SAS programs to carry out the necessary analyses and draw appropriate inferences for common statistical problems. After introducing fundamental statistical concepts, the author describes methods used for quantitative data and continuous data following normal and nonnormal distributions. She then focuses on regression methodology, highlighting simple linear regression, logistic regression, and the proportional hazards model. The final chapter briefly discusses such miscellaneous topics as propensity scores, misclassification errors, interim analysis, conditional power, bootstrap, and jackknife. With SAS code and output integrated throughout, this book shows how to interpret data using SAS and illustrates the many statistical methods available for tackling problems in a range of fields, including the pharmaceutical industry and the social sciences.