Statistical Models of Shape

Statistical Models of Shape
Title Statistical Models of Shape PDF eBook
Author Rhodri Davies
Publisher Springer Science & Business Media
Pages 309
Release 2008-12-15
Genre Computers
ISBN 184800138X

Download Statistical Models of Shape Book in PDF, Epub and Kindle

The goal of image interpretation is to convert raw image data into me- ingful information. Images are often interpreted manually. In medicine, for example, a radiologist looks at a medical image, interprets it, and tra- lates the data into a clinically useful form. Manual image interpretation is, however, a time-consuming, error-prone, and subjective process that often requires specialist knowledge. Automated methods that promise fast and - jective image interpretation have therefore stirred up much interest and have become a signi?cant area of research activity. Early work on automated interpretation used low-level operations such as edge detection and region growing to label objects in images. These can p- ducereasonableresultsonsimpleimages,butthepresenceofnoise,occlusion, andstructuralcomplexity oftenleadstoerroneouslabelling. Furthermore,- belling an object is often only the ?rst step of the interpretation process. In order to perform higher-level analysis, a priori information must be incor- rated into the interpretation process. A convenient way of achieving this is to use a ?exible model to encode information such as the expected size, shape, appearance, and position of objects in an image. The use of ?exible models was popularized by the active contour model, or ‘snake’ [98]. A snake deforms so as to match image evidence (e.g., edges) whilst ensuring that it satis?es structural constraints. However, a snake lacks speci?city as it has little knowledge of the domain, limiting its value in image interpretation.

Statistical Shape Analysis

Statistical Shape Analysis
Title Statistical Shape Analysis PDF eBook
Author Ian L. Dryden
Publisher John Wiley & Sons
Pages 496
Release 2016-07-08
Genre Mathematics
ISBN 1119072514

Download Statistical Shape Analysis Book in PDF, Epub and Kindle

A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while retaining sufficient detail for more specialist statisticians to appreciate the challenges and opportunities of this new field. Computer code has been included for instructional use, along with exercises to enable readers to implement the applications themselves in R and to follow the key ideas by hands-on analysis. Statistical Shape Analysis: with Applications in R will offer a valuable introduction to this fast-moving research area for statisticians and other applied scientists working in diverse areas, including archaeology, bioinformatics, biology, chemistry, computer science, medicine, morphometics and image analysis .

Statistical Shape and Deformation Analysis

Statistical Shape and Deformation Analysis
Title Statistical Shape and Deformation Analysis PDF eBook
Author Guoyan Zheng
Publisher Academic Press
Pages 510
Release 2017-03-23
Genre Computers
ISBN 0128104945

Download Statistical Shape and Deformation Analysis Book in PDF, Epub and Kindle

Statistical Shape and Deformation Analysis: Methods, Implementation and Applications contributes enormously to solving different problems in patient care and physical anthropology, ranging from improved automatic registration and segmentation in medical image computing to the study of genetics, evolution and comparative form in physical anthropology and biology. This book gives a clear description of the concepts, methods, algorithms and techniques developed over the last three decades that is followed by examples of their implementation using open source software. Applications of statistical shape and deformation analysis are given for a wide variety of fields, including biometry, anthropology, medical image analysis and clinical practice. - Presents an accessible introduction to the basic concepts, methods, algorithms and techniques in statistical shape and deformation analysis - Includes implementation examples using open source software - Covers real-life applications of statistical shape and deformation analysis methods

Distributions for Modeling Location, Scale, and Shape

Distributions for Modeling Location, Scale, and Shape
Title Distributions for Modeling Location, Scale, and Shape PDF eBook
Author Robert A. Rigby
Publisher CRC Press
Pages 544
Release 2019-10-08
Genre Mathematics
ISBN 1000701182

Download Distributions for Modeling Location, Scale, and Shape Book in PDF, Epub and Kindle

This is a book about statistical distributions, their properties, and their application to modelling the dependence of the location, scale, and shape of the distribution of a response variable on explanatory variables. It will be especially useful to applied statisticians and data scientists in a wide range of application areas, and also to those interested in the theoretical properties of distributions. This book follows the earlier book ‘Flexible Regression and Smoothing: Using GAMLSS in R’, [Stasinopoulos et al., 2017], which focused on the GAMLSS model and software. GAMLSS (the Generalized Additive Model for Location, Scale, and Shape, [Rigby and Stasinopoulos, 2005]), is a regression framework in which the response variable can have any parametric distribution and all the distribution parameters can be modelled as linear or smooth functions of explanatory variables. The current book focuses on distributions and their application. Key features: Describes over 100 distributions, (implemented in the GAMLSS packages in R), including continuous, discrete and mixed distributions. Comprehensive summary tables of the properties of the distributions. Discusses properties of distributions, including skewness, kurtosis, robustness and an important classification of tail heaviness. Includes mixed distributions which are continuous distributions with additional specific values with point probabilities. Includes many real data examples, with R code integrated in the text for ease of understanding and replication. Supplemented by the gamlss website. This book will be useful for applied statisticians and data scientists in selecting a distribution for a univariate response variable and modelling its dependence on explanatory variables, and to those interested in the properties of distributions.

Medical Image Recognition, Segmentation and Parsing

Medical Image Recognition, Segmentation and Parsing
Title Medical Image Recognition, Segmentation and Parsing PDF eBook
Author S. Kevin Zhou
Publisher Academic Press
Pages 548
Release 2015-12-11
Genre Computers
ISBN 0128026766

Download Medical Image Recognition, Segmentation and Parsing Book in PDF, Epub and Kindle

This book describes the technical problems and solutions for automatically recognizing and parsing a medical image into multiple objects, structures, or anatomies. It gives all the key methods, including state-of- the-art approaches based on machine learning, for recognizing or detecting, parsing or segmenting, a cohort of anatomical structures from a medical image. Written by top experts in Medical Imaging, this book is ideal for university researchers and industry practitioners in medical imaging who want a complete reference on key methods, algorithms and applications in medical image recognition, segmentation and parsing of multiple objects. Learn: - Research challenges and problems in medical image recognition, segmentation and parsing of multiple objects - Methods and theories for medical image recognition, segmentation and parsing of multiple objects - Efficient and effective machine learning solutions based on big datasets - Selected applications of medical image parsing using proven algorithms - Provides a comprehensive overview of state-of-the-art research on medical image recognition, segmentation, and parsing of multiple objects - Presents efficient and effective approaches based on machine learning paradigms to leverage the anatomical context in the medical images, best exemplified by large datasets - Includes algorithms for recognizing and parsing of known anatomies for practical applications

Statistical Modeling for Naturalists

Statistical Modeling for Naturalists
Title Statistical Modeling for Naturalists PDF eBook
Author Pedro F. Quintana Ascencio
Publisher Cambridge Scholars Publishing
Pages 210
Release 2022-01-31
Genre Science
ISBN 1527579530

Download Statistical Modeling for Naturalists Book in PDF, Epub and Kindle

This book will allow naturalists, nature stewards, and graduate students to appreciate and comprehend basic statistical concepts as a bridge to more complex themes relevant to their daily work. Although there are excellent sources on more specialized analytical topics relevant to naturalists, this introductory book makes a connection with the experience and needs of field practitioners. It uses aspects of the natural history of the Florida scrub relevant for conservation and management as examples of analytical issues pertinent to the naturalist in a broader context. Each chapter identifies important ecological questions and then provides approaches to evaluate data, focusing on the analytical decision-making process. The book guides the reader on frequently overlooked aspects such as the understanding of model assumptions, alternative model specifications, model output interpretation, and model limitations.

Linear Statistical Models

Linear Statistical Models
Title Linear Statistical Models PDF eBook
Author James H. Stapleton
Publisher John Wiley & Sons
Pages 517
Release 2009-08-03
Genre Mathematics
ISBN 0470231467

Download Linear Statistical Models Book in PDF, Epub and Kindle

Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." —The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up-to-date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction-theorem-proof-examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S-Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book's updated descriptions and examples, which can be simulated using R, S-Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book's FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper-undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.