Handbook of Statistical Modeling for the Social and Behavioral Sciences
Title | Handbook of Statistical Modeling for the Social and Behavioral Sciences PDF eBook |
Author | G. Arminger |
Publisher | Springer Science & Business Media |
Pages | 603 |
Release | 2013-06-29 |
Genre | Psychology |
ISBN | 1489912924 |
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Statistical Models for the Social and Behavioral Sciences
Title | Statistical Models for the Social and Behavioral Sciences PDF eBook |
Author | William H. Crown |
Publisher | Praeger |
Pages | 208 |
Release | 1998-02-18 |
Genre | Business & Economics |
ISBN |
Multiple regression analysis has been widely used by researchers to analyze complex social problems since the 1950s. A specialization in economics, known as econometrics, developed out of a recognition that multiple regression is based upon a large number of assumptions—many of which are commonly violated in specific applications. Econometricians developed tests for violations of the regression model assumptions, as well as a variety of corrective measures for estimating regression models in the presence of many of the violations. Unfortunately, the mathematical sophistication required to understand the econometrics literature started out high and has continued to rise over the years. As a consequence, an understanding of the assumptions of the regression model, tests for violations, and corrective estimation approaches have failed to permeate widely many other policy-related disciplines such as political science, social work, public administration, and sociology. One of the key objectives of this book is to translate the results from the econometrics literature into language that policy analysts from other disciplines can understand easily. A second objective is to present a discussion of so-called limited-dependent variable models. One of the assumptions of the regression model is that the dependent variable is measured on an interval scale. But often the dependent variable of interest is discrete or categorical. Whether someone is in poverty or, whether they are working full-time, part-time, or out of the labor force, marital status—all are examples of categorical variables that might be of policy interest. Moreover, the growing availability of large-scale public use data sets containing information on individuals and families has heightened the relevance of categorical variables in policy analysis. The mathematical preparation required to understand procedures for estimating categorical models is, however, even more daunting than that for fully understanding and using the regression model. As with the theoretical development of the regression model, most presentations of categorical models, such as Logit and Probit, are to be found in econometric literature. Moreover, this literature offers little in the way of practical advice on how to estimate and interpret model results. This book is the first to present a detailed and accessible discussion of multiple regression and limited-dependent variable models in the context of policy analysis. As such it will be an invaluable resource for most scholars, researchers, and students in the social and behavioral sciences.
Statistical Methods for the Social and Behavioural Sciences
Title | Statistical Methods for the Social and Behavioural Sciences PDF eBook |
Author | David B. Flora |
Publisher | SAGE |
Pages | 786 |
Release | 2017-12-11 |
Genre | Social Science |
ISBN | 1526421925 |
Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.
Statistical Power Analysis for the Social and Behavioral Sciences
Title | Statistical Power Analysis for the Social and Behavioral Sciences PDF eBook |
Author | Xiaofeng Steven Liu |
Publisher | Routledge |
Pages | 285 |
Release | 2013-11-07 |
Genre | Psychology |
ISBN | 1136464182 |
This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences
Title | Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences PDF eBook |
Author | Brian S. Everitt |
Publisher | CRC Press |
Pages | 324 |
Release | 2009-09-28 |
Genre | Business & Economics |
ISBN | 1439807701 |
Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues.The author begins by exploring
Statistical Test Theory for the Behavioral Sciences
Title | Statistical Test Theory for the Behavioral Sciences PDF eBook |
Author | Dato N. M. de Gruijter |
Publisher | CRC Press |
Pages | 282 |
Release | 2007-08-31 |
Genre | Mathematics |
ISBN | 1584889594 |
Since the development of the first intelligence test in the early 20th century, educational and psychological tests have become important measurement techniques to quantify human behavior. Focusing on this ubiquitous yet fruitful area of research, Statistical Test Theoryfor the Behavioral Sciences provides both a broad overview and a
Marginal Models
Title | Marginal Models PDF eBook |
Author | Wicher Bergsma |
Publisher | Springer Science & Business Media |
Pages | 274 |
Release | 2009-04-03 |
Genre | Science |
ISBN | 0387096108 |
Marginal Models for Dependent, Clustered, and Longitudinal Categorical Data provides a comprehensive overview of the basic principles of marginal modeling and offers a wide range of possible applications. Marginal models are often the best choice for answering important research questions when dependent observations are involved, as the many real world examples in this book show. In the social, behavioral, educational, economic, and biomedical sciences, data are often collected in ways that introduce dependencies in the observations to be compared. For example, the same respondents are interviewed at several occasions, several members of networks or groups are interviewed within the same survey, or, within families, both children and parents are investigated. Statistical methods that take the dependencies in the data into account must then be used, e.g., when observations at time one and time two are compared in longitudinal studies. At present, researchers almost automatically turn to multi-level models or to GEE estimation to deal with these dependencies. Despite the enormous potential and applicability of these recent developments, they require restrictive assumptions on the nature of the dependencies in the data. The marginal models of this book provide another way of dealing with these dependencies, without the need for such assumptions, and can be used to answer research questions directly at the intended marginal level. The maximum likelihood method, with its attractive statistical properties, is used for fitting the models. This book has mainly been written with applied researchers in mind. It includes many real world examples, explains the types of research questions for which marginal modeling is useful, and provides a detailed description of how to apply marginal models for a great diversity of research questions. All these examples are presented on the book's website (www.cmm.st), along with user friendly programs.