Statistical Modeling and Analysis for Complex Data Problems
Title | Statistical Modeling and Analysis for Complex Data Problems PDF eBook |
Author | Pierre Duchesne |
Publisher | Springer Science & Business Media |
Pages | 330 |
Release | 2005-12-05 |
Genre | Mathematics |
ISBN | 0387245553 |
This book reviews some of today’s more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors – largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes – present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
Statistical Modeling and Analysis for Complex Data Problems
Title | Statistical Modeling and Analysis for Complex Data Problems PDF eBook |
Author | Pierre Duchesne |
Publisher | Springer Science & Business Media |
Pages | 354 |
Release | 2005-04-12 |
Genre | Business & Economics |
ISBN | 9780387245546 |
STATISTICAL MODELING AND ANALYSIS FOR COMPLEX DATA PROBLEMS treats some of today’s more complex problems and it reflects some of the important research directions in the field. Twenty-nine authors—largely from Montreal’s GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes—present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains. Some of the areas and topics examined in the volume are: an analysis of complex survey data, the 2000 American presidential election in Florida, data mining, estimation of uncertainty for machine learning algorithms, interacting stochastic processes, dependent data & copulas, Bayesian analysis of hazard rates, re-sampling methods in a periodic replacement problem, statistical testing in genetics and for dependent data, statistical analysis of time series analysis, theoretical and applied stochastic processes, and an efficient non linear filtering algorithm for the position detection of multiple targets. The book examines the methods and problems from a modeling perspective and surveys the state of current research on each topic and provides direction for further research exploration of the area.
Statistical Modeling for Biomedical Researchers
Title | Statistical Modeling for Biomedical Researchers PDF eBook |
Author | William D. Dupont |
Publisher | Cambridge University Press |
Pages | 543 |
Release | 2009-02-12 |
Genre | Medical |
ISBN | 0521849527 |
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.
Complex Models and Computational Methods in Statistics
Title | Complex Models and Computational Methods in Statistics PDF eBook |
Author | Matteo Grigoletto |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2013-01-26 |
Genre | Mathematics |
ISBN | 884702871X |
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Statistical Learning of Complex Data
Title | Statistical Learning of Complex Data PDF eBook |
Author | Francesca Greselin |
Publisher | Springer Nature |
Pages | 200 |
Release | 2019-09-06 |
Genre | Mathematics |
ISBN | 3030211401 |
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13–15, 2017.
Statistical Foundations of Data Science
Title | Statistical Foundations of Data Science PDF eBook |
Author | Jianqing Fan |
Publisher | CRC Press |
Pages | 974 |
Release | 2020-09-21 |
Genre | Mathematics |
ISBN | 0429527616 |
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
The Two Cultures
Title | The Two Cultures PDF eBook |
Author | C. P. Snow |
Publisher | Cambridge University Press |
Pages | 193 |
Release | 2012-03-26 |
Genre | Philosophy |
ISBN | 1107606144 |
The importance of science and technology and future of education and research are just some of the subjects discussed here.