Statistical Inference for Models with Multivariate t-Distributed Errors
Title | Statistical Inference for Models with Multivariate t-Distributed Errors PDF eBook |
Author | A. K. Md. Ehsanes Saleh |
Publisher | John Wiley & Sons |
Pages | 255 |
Release | 2014-10-01 |
Genre | Mathematics |
ISBN | 1118853962 |
This book summarizes the results of various models under normal theory with a brief review of the literature. Statistical Inference for Models with Multivariate t-Distributed Errors: Includes a wide array of applications for the analysis of multivariate observations Emphasizes the development of linear statistical models with applications to engineering, the physical sciences, and mathematics Contains an up-to-date bibliography featuring the latest trends and advances in the field to provide a collective source for research on the topic Addresses linear regression models with non-normal errors with practical real-world examples Uniquely addresses regression models in Student's t-distributed errors and t-models Supplemented with an Instructor's Solutions Manual, which is available via written request by the Publisher
Handbook Of Applied Econometrics And Statistical Inference
Title | Handbook Of Applied Econometrics And Statistical Inference PDF eBook |
Author | Aman Ullah |
Publisher | CRC Press |
Pages | 741 |
Release | 2002-01-29 |
Genre | Mathematics |
ISBN | 082474411X |
Summarizes developments and techniques in the field. It highlights areas such as sample surveys, nonparametic analysis, hypothesis testing, time series analysis, Bayesian inference, and distribution theory for applications in statistics, economics, medicine, biology, and engineering.
Theory of Ridge Regression Estimation with Applications
Title | Theory of Ridge Regression Estimation with Applications PDF eBook |
Author | A. K. Md. Ehsanes Saleh |
Publisher | John Wiley & Sons |
Pages | 384 |
Release | 2019-02-12 |
Genre | Mathematics |
ISBN | 1118644611 |
A guide to the systematic analytical results for ridge, LASSO, preliminary test, and Stein-type estimators with applications Theory of Ridge Regression Estimation with Applications offers a comprehensive guide to the theory and methods of estimation. Ridge regression and LASSO are at the center of all penalty estimators in a range of standard models that are used in many applied statistical analyses. Written by noted experts in the field, the book contains a thorough introduction to penalty and shrinkage estimation and explores the role that ridge, LASSO, and logistic regression play in the computer intensive area of neural network and big data analysis. Designed to be accessible, the book presents detailed coverage of the basic terminology related to various models such as the location and simple linear models, normal and rank theory-based ridge, LASSO, preliminary test and Stein-type estimators. The authors also include problem sets to enhance learning. This book is a volume in the Wiley Series in Probability and Statistics series that provides essential and invaluable reading for all statisticians. This important resource: Offers theoretical coverage and computer-intensive applications of the procedures presented Contains solutions and alternate methods for prediction accuracy and selecting model procedures Presents the first book to focus on ridge regression and unifies past research with current methodology Uses R throughout the text and includes a companion website containing convenient data sets Written for graduate students, practitioners, and researchers in various fields of science, Theory of Ridge Regression Estimation with Applications is an authoritative guide to the theory and methodology of statistical estimation.
Financial Statistics and Data Analytics
Title | Financial Statistics and Data Analytics PDF eBook |
Author | Shuangzhe Li |
Publisher | MDPI |
Pages | 232 |
Release | 2021-03-02 |
Genre | Business & Economics |
ISBN | 3039439758 |
Modern financial management is largely about risk management, which is increasingly data-driven. The problem is how to extract information from the data overload. It is here that advanced statistical and machine learning techniques can help. Accordingly, finance, statistics, and data analytics go hand in hand. The purpose of this book is to bring the state-of-art research in these three areas to the fore and especially research that juxtaposes these three.
Multivariate T-Distributions and Their Applications
Title | Multivariate T-Distributions and Their Applications PDF eBook |
Author | Samuel Kotz |
Publisher | Cambridge University Press |
Pages | 296 |
Release | 2004-02-16 |
Genre | Mathematics |
ISBN | 9780521826549 |
Almost all the results available in the literature on multivariate t-distributions published in the last 50 years are now collected together in this comprehensive reference. Because these distributions are becoming more prominent in many applications, this book is a must for any serious researcher or consultant working in multivariate analysis and statistical distributions. Much of this material has never before appeared in book form. The first part of the book emphasizes theoretical results of a probabilistic nature. In the second part of the book, these are supplemented by a variety of statistical aspects. Various generalizations and applications are dealt with in the final chapters. The material on estimation and regression models is of special value for practitioners in statistics and economics. A comprehensive bibliography of over 350 references is included.
Rank-Based Methods for Shrinkage and Selection
Title | Rank-Based Methods for Shrinkage and Selection PDF eBook |
Author | A. K. Md. Ehsanes Saleh |
Publisher | John Wiley & Sons |
Pages | 484 |
Release | 2022-03-22 |
Genre | Mathematics |
ISBN | 1119625394 |
Rank-Based Methods for Shrinkage and Selection A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students. Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes: Development of rank theory and application of shrinkage and selection Methodology for robust data science using penalized rank estimators Theory and methods of penalized rank dispersion for ridge, LASSO and Enet Topics include Liu regression, high-dimension, and AR(p) Novel rank-based logistic regression and neural networks Problem sets include R code to demonstrate its use in machine learning
Nonstationary Systems: Theory and Applications
Title | Nonstationary Systems: Theory and Applications PDF eBook |
Author | Fakher Chaari |
Publisher | Springer Nature |
Pages | 439 |
Release | 2021-07-21 |
Genre | Technology & Engineering |
ISBN | 3030821102 |
This book offers an overview of current and recent methods for the analysis of the nonstationary processes, focusing on cyclostationary systems that are ubiquitous in various application fields. Based on the 13th Workshop on Nonstationary Systems and Their Applications, held on February 3-5, 2020, in Grodek nad Dunajcem, Poland, the book merges theoretical contributions describing new statistical and intelligent methods for analyzing nonstationary processes, and applied works showing how the proposed methods can be implemented in practice and do perform in real-world case studies. A significant part of the book is dedicated to nonstationary systems applications, with a special emphasis on those in condition monitoring.