Statistical Inference for Discrete Time Stochastic Processes
Title | Statistical Inference for Discrete Time Stochastic Processes PDF eBook |
Author | M. B. Rajarshi |
Publisher | Springer Science & Business Media |
Pages | 121 |
Release | 2014-07-08 |
Genre | Mathematics |
ISBN | 8132207637 |
This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions. It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed. Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail. This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students.
Statistical Inferences for Stochasic Processes
Title | Statistical Inferences for Stochasic Processes PDF eBook |
Author | Ishwar V. Basawa |
Publisher | Academic Press |
Pages | 464 |
Release | 1980-01-28 |
Genre | Mathematics |
ISBN |
Introductory examples of stochastic models; Special models; General theory; Further approaches.
Bayesian Inference for Stochastic Processes
Title | Bayesian Inference for Stochastic Processes PDF eBook |
Author | Lyle D. Broemeling |
Publisher | CRC Press |
Pages | 409 |
Release | 2017-12-12 |
Genre | Mathematics |
ISBN | 1315303574 |
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Statistical Analysis of Stochastic Processes in Time
Title | Statistical Analysis of Stochastic Processes in Time PDF eBook |
Author | J. K. Lindsey |
Publisher | Cambridge University Press |
Pages | 356 |
Release | 2004-08-02 |
Genre | Mathematics |
ISBN | 9781139454513 |
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
Statistical Inference for Diffusion Type Processes
Title | Statistical Inference for Diffusion Type Processes PDF eBook |
Author | B.L.S. Prakasa Rao |
Publisher | Wiley |
Pages | 0 |
Release | 2010-05-24 |
Genre | Mathematics |
ISBN | 9780470711125 |
Decision making in all spheres of activity involves uncertainty. If rational decisions have to be made, they have to be based on the past observations of the phenomenon in question. Data collection, model building and inference from the data collected, validation of the model and refinement of the model are the key steps or building blocks involved in any rational decision making process. Stochastic processes are widely used for model building in the social, physical, engineering, and life sciences as well as in financial economics. Statistical inference for stochastic processes is of great importance from the theoretical as well as from applications point of view in model building. During the past twenty years, there has been a large amount of progress in the study of inferential aspects for continuous as well as discrete time stochastic processes. Diffusion type processes are a large class of continuous time processes which are widely used for stochastic modelling. the book aims to bring together several methods of estimation of parameters involved in such processes when the process is observed continuously over a period of time or when sampled data is available as generally feasible.
Stochastic Epidemic Models with Inference
Title | Stochastic Epidemic Models with Inference PDF eBook |
Author | Tom Britton |
Publisher | Springer Nature |
Pages | 477 |
Release | 2019-11-30 |
Genre | Mathematics |
ISBN | 3030309002 |
Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.
Bootstrapping and Related Techniques
Title | Bootstrapping and Related Techniques PDF eBook |
Author | Karl-Heinz Jöckel |
Publisher | Springer Science & Business Media |
Pages | 231 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642488501 |
This book contains 30 selected, refereed papers from an in- ternational conference on bootstrapping and related techni- ques held in Trier 1990. Thepurpose of the book is to in- form about recent research in the area of bootstrap, jack- knife and Monte Carlo Tests. Addressing the novice and the expert it covers as well theoretical as practical aspects of these statistical techniques. Potential users in different disciplines as biometry, epidemiology, computer science, economics and sociology but also theoretical researchers s- hould consult the book to be informed on the state of the art in this area.