Statistical Case Studies

Statistical Case Studies
Title Statistical Case Studies PDF eBook
Author Roxy Peck
Publisher SIAM
Pages 212
Release 1998-01-01
Genre Mathematics
ISBN 9780898719741

Download Statistical Case Studies Book in PDF, Epub and Kindle

Statisticians know that the clean data sets that appear in textbook problems have little to do with real-life industry data. To better prepare their students for all types of statistical careers, academic statisticians now strive to use data sets from real-life statistical problems. This book contains 20 case studies that use actual data sets that have not been simplified for classroom use. Each case study is a collaboration between statisticians from academe and from business, industry, or government.

Statistical Case Studies

Statistical Case Studies
Title Statistical Case Studies PDF eBook
Author Roxy Peck
Publisher SIAM
Pages 308
Release 1998-01-01
Genre Mathematics
ISBN 0898714133

Download Statistical Case Studies Book in PDF, Epub and Kindle

This book contains 20 case studies that use actual data sets that have not been simplified for classroom use.

Handbook of Statistical Methods for Case-Control Studies

Handbook of Statistical Methods for Case-Control Studies
Title Handbook of Statistical Methods for Case-Control Studies PDF eBook
Author Ørnulf Borgan
Publisher CRC Press
Pages 536
Release 2018-06-27
Genre Mathematics
ISBN 1498768598

Download Handbook of Statistical Methods for Case-Control Studies Book in PDF, Epub and Kindle

Handbook of Statistical Methods for Case-Control Studies is written by leading researchers in the field. It provides an in-depth treatment of up-to-date and currently developing statistical methods for the design and analysis of case-control studies, as well as a review of classical principles and methods. The handbook is designed to serve as a reference text for biostatisticians and quantitatively-oriented epidemiologists who are working on the design and analysis of case-control studies or on related statistical methods research. Though not specifically intended as a textbook, it may also be used as a backup reference text for graduate level courses. Book Sections Classical designs and causal inference, measurement error, power, and small-sample inference Designs that use full-cohort information Time-to-event data Genetic epidemiology About the Editors Ørnulf Borgan is Professor of Statistics, University of Oslo. His book with Andersen, Gill and Keiding on counting processes in survival analysis is a world classic. Norman E. Breslow was, at the time of his death, Professor Emeritus in Biostatistics, University of Washington. For decades, his book with Nick Day has been the authoritative text on case-control methodology. Nilanjan Chatterjee is Bloomberg Distinguished Professor, Johns Hopkins University. He leads a broad research program in statistical methods for modern large scale biomedical studies. Mitchell H. Gail is a Senior Investigator at the National Cancer Institute. His research includes modeling absolute risk of disease, intervention trials, and statistical methods for epidemiology. Alastair Scott was, at the time of his death, Professor Emeritus of Statistics, University of Auckland. He was a major contributor to using survey sampling methods for analyzing case-control data. Chris J. Wild is Professor of Statistics, University of Auckland. His research includes nonlinear regression and methods for fitting models to response-selective data.

Statistical Decision Problems

Statistical Decision Problems
Title Statistical Decision Problems PDF eBook
Author Michael Zabarankin
Publisher Springer Science & Business Media
Pages 254
Release 2013-12-16
Genre Business & Economics
ISBN 1461484715

Download Statistical Decision Problems Book in PDF, Epub and Kindle

Statistical Decision Problems presents a quick and concise introduction into the theory of risk, deviation and error measures that play a key role in statistical decision problems. It introduces state-of-the-art practical decision making through twenty-one case studies from real-life applications. The case studies cover a broad area of topics and the authors include links with source code and data, a very helpful tool for the reader. In its core, the text demonstrates how to use different factors to formulate statistical decision problems arising in various risk management applications, such as optimal hedging, portfolio optimization, cash flow matching, classification, and more. The presentation is organized into three parts: selected concepts of statistical decision theory, statistical decision problems, and case studies with portfolio safeguard. The text is primarily aimed at practitioners in the areas of risk management, decision making, and statistics. However, the inclusion of a fair bit of mathematical rigor renders this monograph an excellent introduction to the theory of general error, deviation, and risk measures for graduate students. It can be used as supplementary reading for graduate courses including statistical analysis, data mining, stochastic programming, financial engineering, to name a few. The high level of detail may serve useful to applied mathematicians, engineers, and statisticians interested in modeling and managing risk in various applications.

Applied Asymptotics

Applied Asymptotics
Title Applied Asymptotics PDF eBook
Author A. R. Brazzale
Publisher Cambridge University Press
Pages 256
Release 2007-05-31
Genre Business & Economics
ISBN 9780521847032

Download Applied Asymptotics Book in PDF, Epub and Kindle

First practical treatment of small-sample asymptotics, enabling practitioners to apply new methods with confidence.

Case Studies in Neural Data Analysis

Case Studies in Neural Data Analysis
Title Case Studies in Neural Data Analysis PDF eBook
Author Mark A. Kramer
Publisher MIT Press
Pages 385
Release 2016-11-04
Genre Science
ISBN 0262529378

Download Case Studies in Neural Data Analysis Book in PDF, Epub and Kindle

A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website.

Introduction to Statistical Thinking

Introduction to Statistical Thinking
Title Introduction to Statistical Thinking PDF eBook
Author Benjamin Yakir
Publisher
Pages 324
Release 2014-09-19
Genre
ISBN 9781502424662

Download Introduction to Statistical Thinking Book in PDF, Epub and Kindle

Introduction to Statistical ThinkingBy Benjamin Yakir