Statistical Analytics for Health Data Science with SAS and R
Title | Statistical Analytics for Health Data Science with SAS and R PDF eBook |
Author | Jeffrey Wilson |
Publisher | CRC Press |
Pages | 280 |
Release | 2023-03-27 |
Genre | Business & Economics |
ISBN | 1000848825 |
This book aims to compile typical fundamental-to-advanced statistical methods to be used for health data sciences. Although the book promotes applications to health and health-related data, the models in the book can be used to analyze any kind of data. The data are analyzed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers’ learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for the most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research.
Data Science and Predictive Analytics
Title | Data Science and Predictive Analytics PDF eBook |
Author | Ivo D. Dinov |
Publisher | Springer Nature |
Pages | 940 |
Release | 2023-02-16 |
Genre | Computers |
ISBN | 3031174836 |
This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings. Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book’s fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.
Statistical Analytics for Health Data Science Using R/SAS
Title | Statistical Analytics for Health Data Science Using R/SAS PDF eBook |
Author | Jeffrey R. Wilson |
Publisher | |
Pages | 0 |
Release | 2023 |
Genre | Medical statistics |
ISBN | 9781032325699 |
"This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers' learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research"--
End-to-End Data Science with SAS
Title | End-to-End Data Science with SAS PDF eBook |
Author | James Gearheart |
Publisher | SAS Institute |
Pages | 255 |
Release | 2020-06-26 |
Genre | Computers |
ISBN | 1642958069 |
Learn data science concepts with real-world examples in SAS! End-to-End Data Science with SAS: A Hands-On Programming Guide provides clear and practical explanations of the data science environment, machine learning techniques, and the SAS programming knowledge necessary to develop machine learning models in any industry. The book covers concepts including understanding the business need, creating a modeling data set, linear regression, parametric classification models, and non-parametric classification models. Real-world business examples and example code are used to demonstrate each process step-by-step. Although a significant amount of background information and supporting mathematics are presented, the book is not structured as a textbook, but rather it is a user’s guide for the application of data science and machine learning in a business environment. Readers will learn how to think like a data scientist, wrangle messy data, choose a model, and evaluate the model’s effectiveness. New data scientists or professionals who want more experience with SAS will find this book to be an invaluable reference. Take your data science career to the next level by mastering SAS programming for machine learning models.
The Little SAS Book
Title | The Little SAS Book PDF eBook |
Author | Lora D. Delwiche |
Publisher | SAS Institute |
Pages | 512 |
Release | 2019-10-11 |
Genre | Computers |
ISBN | 1642953431 |
A classic that just keeps getting better, The Little SAS Book is essential for anyone learning SAS programming. Lora Delwiche and Susan Slaughter offer a user-friendly approach so that readers can quickly and easily learn the most commonly used features of the SAS language. Each topic is presented in a self-contained, two-page layout complete with examples and graphics. Nearly every section has been revised to ensure that the sixth edition is fully up-to-date. This edition is also interface-independent, written for all SAS programmers whether they use SAS Studio, SAS Enterprise Guide, or the SAS windowing environment. New sections have been added covering PROC SQL, iterative DO loops, DO WHILE and DO UNTIL statements, %DO statements, using variable names with special characters, the ODS EXCEL destination, and the XLSX LIBNAME engine. This title belongs on every SAS programmer's bookshelf. It's a resource not just to get you started, but one you will return to as you continue to improve your programming skills. Learn more about the updates to The Little SAS Book, Sixth Edition here. Reviews for The Little SAS Book, Sixth Edition can be read here.
Likelihood Methods in Survival Analysis
Title | Likelihood Methods in Survival Analysis PDF eBook |
Author | Jun Ma |
Publisher | CRC Press |
Pages | 401 |
Release | 2024-10-01 |
Genre | Mathematics |
ISBN | 1351109707 |
Many conventional survival analysis methods, such as the Kaplan-Meier method for survival function estimation and the partial likelihood method for Cox model regression coefficients estimation, were developed under the assumption that survival times are subject to right censoring only. However, in practice, survival time observations may include interval-censored data, especially when the exact time of the event of interest cannot be observed. When interval-censored observations are present in a survival dataset, one generally needs to consider likelihood-based methods for inference. If the survival model under consideration is fully parametric, then likelihood-based methods impose neither theoretical nor computational challenges. However, if the model is semi-parametric, there will be difficulties in both theoretical and computational aspects. Likelihood Methods in Survival Analysis: With R Examples explores these challenges and provides practical solutions. It not only covers conventional Cox models where survival times are subject to interval censoring, but also extends to more complicated models, such as stratified Cox models, extended Cox models where time-varying covariates are present, mixture cure Cox models, and Cox models with dependent right censoring. The book also discusses non-Cox models, particularly the additive hazards model and parametric log-linear models for bivariate survival times where there is dependence among competing outcomes. Features Provides a broad and accessible overview of likelihood methods in survival analysis Covers a wide range of data types and models, from the semi-parametric Cox model with interval censoring through to parametric survival models for competing risks Includes many examples using real data to illustrate the methods Includes integrated R code for implementation of the methods Supplemented by a GitHub repository with datasets and R code The book will make an ideal reference for researchers and graduate students of biostatistics, statistics, and data science, whose interest in survival analysis extend beyond applications. It offers useful and solid training to those who wish to enhance their knowledge in the methodology and computational aspects of biostatistics.
Statistical Methods in Health Disparity Research
Title | Statistical Methods in Health Disparity Research PDF eBook |
Author | J. Sunil Rao |
Publisher | CRC Press |
Pages | 298 |
Release | 2023-07-11 |
Genre | Medical |
ISBN | 1000905098 |
• Presents an overview of methods and applications of health disparity estimation • First book to synthesize research in this field in a unified statistical framework • Covers classical approaches, and builds to more modern computational techniques • Includes many worked examples and case studies using real data • Discusses available software for estimation