Statistical Analysis of Stochastic Processes in Time

Statistical Analysis of Stochastic Processes in Time
Title Statistical Analysis of Stochastic Processes in Time PDF eBook
Author J. K. Lindsey
Publisher Cambridge University Press
Pages 356
Release 2004-08-02
Genre Mathematics
ISBN 9781139454513

Download Statistical Analysis of Stochastic Processes in Time Book in PDF, Epub and Kindle

This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.

Bayesian Analysis of Stochastic Process Models

Bayesian Analysis of Stochastic Process Models
Title Bayesian Analysis of Stochastic Process Models PDF eBook
Author David Insua
Publisher John Wiley & Sons
Pages 315
Release 2012-04-02
Genre Mathematics
ISBN 1118304039

Download Bayesian Analysis of Stochastic Process Models Book in PDF, Epub and Kindle

Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.

Stochastic Processes

Stochastic Processes
Title Stochastic Processes PDF eBook
Author Peter Watts Jones
Publisher CRC Press
Pages 255
Release 2017-10-30
Genre Mathematics
ISBN 1498778127

Download Stochastic Processes Book in PDF, Epub and Kindle

Based on a well-established and popular course taught by the authors over many years, Stochastic Processes: An Introduction, Third Edition, discusses the modelling and analysis of random experiments, where processes evolve over time. The text begins with a review of relevant fundamental probability. It then covers gambling problems, random walks, and Markov chains. The authors go on to discuss random processes continuous in time, including Poisson, birth and death processes, and general population models, and present an extended discussion on the analysis of associated stationary processes in queues. The book also explores reliability and other random processes, such as branching, martingales, and simple epidemics. A new chapter describing Brownian motion, where the outcomes are continuously observed over continuous time, is included. Further applications, worked examples and problems, and biographical details have been added to this edition. Much of the text has been reworked. The appendix contains key results in probability for reference. This concise, updated book makes the material accessible, highlighting simple applications and examples. A solutions manual with fully worked answers of all end-of-chapter problems, and Mathematica® and R programs illustrating many processes discussed in the book, can be downloaded from crcpress.com.

Stochastic Models, Statistics and Their Applications

Stochastic Models, Statistics and Their Applications
Title Stochastic Models, Statistics and Their Applications PDF eBook
Author Ansgar Steland
Publisher Springer
Pages 479
Release 2015-02-04
Genre Mathematics
ISBN 3319138812

Download Stochastic Models, Statistics and Their Applications Book in PDF, Epub and Kindle

This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

Modelling and Application of Stochastic Processes

Modelling and Application of Stochastic Processes
Title Modelling and Application of Stochastic Processes PDF eBook
Author Uday B. Desai
Publisher Springer Science & Business Media
Pages 310
Release 1986-10-31
Genre Science
ISBN 9780898381771

Download Modelling and Application of Stochastic Processes Book in PDF, Epub and Kindle

The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).

Introduction to Modeling and Analysis of Stochastic Systems

Introduction to Modeling and Analysis of Stochastic Systems
Title Introduction to Modeling and Analysis of Stochastic Systems PDF eBook
Author V. G. Kulkarni
Publisher Springer
Pages 313
Release 2012-12-27
Genre Mathematics
ISBN 9781461427353

Download Introduction to Modeling and Analysis of Stochastic Systems Book in PDF, Epub and Kindle

This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.

Statistical Analysis of Stochastic Processes in Time

Statistical Analysis of Stochastic Processes in Time
Title Statistical Analysis of Stochastic Processes in Time PDF eBook
Author James K. Lindsey
Publisher
Pages 338
Release 2004
Genre Probabilities
ISBN 9780511215520

Download Statistical Analysis of Stochastic Processes in Time Book in PDF, Epub and Kindle

This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.