Statistical Analysis of Empirical Data
Title | Statistical Analysis of Empirical Data PDF eBook |
Author | Scott Pardo |
Publisher | Springer Nature |
Pages | 278 |
Release | 2020-05-04 |
Genre | Mathematics |
ISBN | 3030433285 |
Researchers and students who use empirical investigation in their work must go through the process of selecting statistical methods for analyses, and they are often challenged to justify these selections. This book is designed for readers with limited background in statistical methodology who seek guidance in defending their statistical decision-making in the worlds of research and practice. It is devoted to helping students and scholars find the information they need to select data analytic methods, and to speak knowledgeably about their statistical research processes. Each chapter opens with a conundrum relating to the selection of an analysis, or to explaining the nature of an analysis. Throughout the chapter, the analysis is described, along with some guidance in justifying the choices of that particular method. Designed to offer statistical knowledge to the non-specialist, this volume can be used in courses on research methods, or for courses on statistical applications to biological, medical, life, social, or physical sciences. It will also be useful to academic and industrial researchers in engineering and in the physical sciences who will benefit from a stronger understanding of how to analyze empirical data. The book is written for those with foundational education in calculus. However, a brief review of fundamental concepts of probability and statistics, together with a primer on some concepts in elementary calculus and matrix algebra, is included. R code and sample datasets are provided.
Empirical Modeling and Data Analysis for Engineers and Applied Scientists
Title | Empirical Modeling and Data Analysis for Engineers and Applied Scientists PDF eBook |
Author | Scott A. Pardo |
Publisher | Springer |
Pages | 255 |
Release | 2016-07-19 |
Genre | Mathematics |
ISBN | 3319327682 |
This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creating predictive or classification models - predicting nature or classifying individuals, and statistics is often used to prove or disprove phenomena as opposed to aiding in the design of a product or process. In industry however, Chemical Engineers use designed experiments to optimize petroleum extraction; Manufacturing Engineers use experimental data to optimize machine operation; Industrial Engineers might use data to determine the optimal number of operators required in a manual assembly process. This text teaches engineering and applied science students to incorporate empirical investigation into such design processes. Much of the discussion in this book is about models, not whether the models truly represent reality but whether they adequately represent reality with respect to the problems at hand; many ideas focus on how to gather data in the most efficient way possible to construct adequate models. Includes chapters on subjects not often seen together in a single text (e.g., measurement systems, mixture experiments, logistic regression, Taguchi methods, simulation) Techniques and concepts introduced present a wide variety of design situations familiar to engineers and applied scientists and inspire incorporation of experimentation and empirical investigation into the design process. Software is integrally linked to statistical analyses with fully worked examples in each chapter; fully worked using several packages: SAS, R, JMP, Minitab, and MS Excel - also including discussion questions at the end of each chapter. The fundamental learning objective of this textbook is for the reader to understand how experimental data can be used to make design decisions and to be familiar with the most common types of experimental designs and analysis methods.
Exploratory Data Analysis in Empirical Research
Title | Exploratory Data Analysis in Empirical Research PDF eBook |
Author | Manfred Schwaiger |
Publisher | Springer Science & Business Media |
Pages | 547 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 364255721X |
This volume presents a selection of new methods and approaches in the field of Exploratory Data Analysis. The reader will find numerous ideas and examples for cross disciplinary applications of classification and data analysis methods in fields such as data and web mining, medicine and biological sciences as well as marketing, finance and management sciences.
Statistics and Causality
Title | Statistics and Causality PDF eBook |
Author | Wolfgang Wiedermann |
Publisher | John Wiley & Sons |
Pages | 497 |
Release | 2016-05-12 |
Genre | Social Science |
ISBN | 1118947061 |
b”STATISTICS AND CAUSALITYA one-of-a-kind guide to identifying and dealing with modern statistical developments in causality Written by a group of well-known experts, Statistics and Causality: Methods for Applied Empirical Research focuses on the most up-to-date developments in statistical methods in respect to causality. Illustrating the properties of statistical methods to theories of causality, the book features a summary of the latest developments in methods for statistical analysis of causality hypotheses. The book is divided into five accessible and independent parts. The first part introduces the foundations of causal structures and discusses issues associated with standard mechanistic and difference-making theories of causality. The second part features novel generalizations of methods designed to make statements concerning the direction of effects. The third part illustrates advances in Granger-causality testing and related issues. The fourth part focuses on counterfactual approaches and propensity score analysis. Finally, the fifth part presents designs for causal inference with an overview of the research designs commonly used in epidemiology. Statistics and Causality: Methods for Applied Empirical Research also includes: New statistical methodologies and approaches to causal analysis in the context of the continuing development of philosophical theories End-of-chapter bibliographies that provide references for further discussions and additional research topics Discussions on the use and applicability of software when appropriate Statistics and Causality: Methods for Applied Empirical Research is an ideal reference for practicing statisticians, applied mathematicians, psychologists, sociologists, logicians, medical professionals, epidemiologists, and educators who want to learn more about new methodologies in causal analysis. The book is also an excellent textbook for graduate-level courses in causality and qualitative logic.
Applied Statistics and Multivariate Data Analysis for Business and Economics
Title | Applied Statistics and Multivariate Data Analysis for Business and Economics PDF eBook |
Author | Thomas Cleff |
Publisher | Springer |
Pages | 488 |
Release | 2019-07-10 |
Genre | Business & Economics |
ISBN | 303017767X |
This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.
Empirical Research in Statistics Education
Title | Empirical Research in Statistics Education PDF eBook |
Author | Andreas Eichler |
Publisher | Springer |
Pages | 44 |
Release | 2016-06-18 |
Genre | Education |
ISBN | 3319389688 |
This ICME-13 Topical Survey provides a review of recent research into statistics education, with a focus on empirical research published in established educational journals and on the proceedings of important conferences on statistics education. It identifies and addresses six key research topics, namely: teachers’ knowledge; teachers’ role in statistics education; teacher preparation; students’ knowledge; students’ role in statistics education; and how students learn statistics with the help of technology. For each topic, the survey builds upon existing reviews, complementing them with the latest research.
Introduction to Space Syntax in Urban Studies
Title | Introduction to Space Syntax in Urban Studies PDF eBook |
Author | Akkelies van Nes |
Publisher | Springer Nature |
Pages | 265 |
Release | 2021-07-31 |
Genre | Political Science |
ISBN | 3030591409 |
This open access textbook is a comprehensive introduction to space syntax method and theory for graduate students and researchers. It provides a step-by-step approach for its application in urban planning and design. This textbook aims to increase the accessibility of the space syntax method for the first time to all graduate students and researchers who are dealing with the built environment, such as those in the field of architecture, urban design and planning, urban sociology, urban geography, archaeology, road engineering, and environmental psychology. Taking a didactical approach, the authors have structured each chapter to explain key concepts and show practical examples followed by underlying theory and provided exercises to facilitate learning in each chapter. The textbook gradually eases the reader into the fundamental concepts and leads them towards complex theories and applications. In summary, the general competencies gain after reading this book are: – to understand, explain, and discuss space syntax as a method and theory; – be capable of undertaking various space syntax analyses such as axial analysis, segment analysis, point depth analysis, or visibility analysis; – be able to apply space syntax for urban research and design practice; – be able to interpret and evaluate space syntax analysis results and embed these in a wider context; – be capable of producing new original work using space syntax. This holistic textbook functions as compulsory literature for spatial analysis courses where space syntax is part of the methods taught. Likewise, this space syntax book is useful for graduate students and researchers who want to do self-study. Furthermore, the book provides readers with the fundamental knowledge to understand and critically reflect on existing literature using space syntax.