The Continuum Limit of Causal Fermion Systems
Title | The Continuum Limit of Causal Fermion Systems PDF eBook |
Author | Felix Finster |
Publisher | Springer |
Pages | 554 |
Release | 2016-08-19 |
Genre | Science |
ISBN | 3319420674 |
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries". The dynamics is described by a novel variational principle, called the causal action principle. In addition to the basics, the book provides all the necessary mathematical background and explains how the causal action principle gives rise to the interactions of the standard model plus gravity on the level of second-quantized fermionic fields coupled to classical bosonic fields. The focus is on getting a mathematically sound connection between causal fermion systems and physical systems in Minkowski space. The book is intended for graduate students entering the field, and is furthermore a valuable reference work for researchers in quantum field theory and quantum gravity.
The Principle of the Fermionic Projector
Title | The Principle of the Fermionic Projector PDF eBook |
Author | Felix Finster |
Publisher | American Mathematical Soc. |
Pages | 314 |
Release | 2006 |
Genre | Mathematics |
ISBN | 0821839748 |
The "principle of the fermionic projector" provides a new mathematical framework for the formulation of physical theories and is a promising approach for physics beyond the standard model. This book begins with a brief review of relativity, relativistic quantum mechanics, and classical gauge theories, emphasizing the basic physical concepts and mathematical foundations. The external field problem and Klein's paradox are discussed and then resolved by introducing the fermionicprojector, a global object in space-time that generalizes the notion of the Dirac sea. At the mathematical core of the book is a precise definition of the fermionic projector and the use of methods of hyperbolic differential equations for detailed analysis. The fermionic projector makes it possible toformulate a new type of variational principle in space-time. The mathematical tools are developed for the analysis of the corresponding Euler-Lagrange equations. A particular variational principle is proposed that gives rise to an effective interaction which shows many similarities to the interactions of the standard model. The main chapters of the book are easily accessible for beginning graduate students in mathematics or physics. Several appendices provide supplementary material, which willbe useful to the experienced researcher.
Topological Insulators and Topological Superconductors
Title | Topological Insulators and Topological Superconductors PDF eBook |
Author | B. Andrei Bernevig |
Publisher | Princeton University Press |
Pages | 264 |
Release | 2013-04-07 |
Genre | Science |
ISBN | 1400846730 |
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.
Advances in Theoretical and Mathematical Physics
Title | Advances in Theoretical and Mathematical Physics PDF eBook |
Author | |
Publisher | |
Pages | 400 |
Release | 2009 |
Genre | Mathematical physics |
ISBN |
A Short Course on Topological Insulators
Title | A Short Course on Topological Insulators PDF eBook |
Author | János K. Asbóth |
Publisher | Springer |
Pages | 176 |
Release | 2016-02-22 |
Genre | Science |
ISBN | 3319256076 |
This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
The Hubbard Model
Title | The Hubbard Model PDF eBook |
Author | Dionys Baeriswyl |
Publisher | Springer Science & Business Media |
Pages | 408 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 1489910425 |
In the slightly more than thirty years since its formulation, the Hubbard model has become a central component of modern many-body physics. It provides a paradigm for strongly correlated, interacting electronic systems and offers insights not only into the general underlying mathematical structure of many-body systems but also into the experimental behavior of many novel electronic materials. In condensed matter physics, the Hubbard model represents the simplest theoret ical framework for describing interacting electrons in a crystal lattice. Containing only two explicit parameters - the ratio ("Ujt") between the Coulomb repulsion and the kinetic energy of the electrons, and the filling (p) of the available electronic band - and one implicit parameter - the structure of the underlying lattice - it appears nonetheless capable of capturing behavior ranging from metallic to insulating and from magnetism to superconductivity. Introduced originally as a model of magnetism of transition met als, the Hubbard model has seen a spectacular recent renaissance in connection with possible applications to high-Tc superconductivity, for which particular emphasis has been placed on the phase diagram of the two-dimensional variant of the model. In mathematical physics, the Hubbard model has also had an essential role. The solution by Lieb and Wu of the one-dimensional Hubbard model by Bethe Ansatz provided the stimulus for a broad and continuing effort to study "solvable" many-body models. In higher dimensions, there have been important but isolated exact results (e. g. , N agoaka's Theorem).
Quantum Field Theory
Title | Quantum Field Theory PDF eBook |
Author | Mark Srednicki |
Publisher | Cambridge University Press |
Pages | 664 |
Release | 2007-01-25 |
Genre | Science |
ISBN | 1139462768 |
Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at www.cambridge.org/9780521864497.