Stability and Stabilization of Infinite Dimensional Systems with Applications
Title | Stability and Stabilization of Infinite Dimensional Systems with Applications PDF eBook |
Author | Zheng-Hua Luo |
Publisher | Springer Science & Business Media |
Pages | 412 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1447104196 |
This book reports on recent achievements in stability and feedback stabilization of infinite systems. In particular emphasis is placed on second order partial differential equations, such as Euler-Bernoulli beam equations, which arise from vibration control of flexible robots arms and large space structures. Various control methods such as sensor feedback control and dynamic boundary control are applied to stabilize the equations. Many new theorems and methods are included in the book. Proof procedures of existing theorems are simplified, and detailed proofs have been given to most theorems. New results on semigroups and their stability are presented, and readers can learn several useful techniques for solving practical engineering problems. Until now, the recently obtained research results included in this book were unavailable in one volume. This self-contained book is an invaluable source of information for all those who are familiar with some basic theorems of functional analysis.
Stability of Finite and Infinite Dimensional Systems
Title | Stability of Finite and Infinite Dimensional Systems PDF eBook |
Author | Michael I. Gil' |
Publisher | Springer Science & Business Media |
Pages | 386 |
Release | 1998-09-30 |
Genre | Mathematics |
ISBN | 9780792382218 |
The aim of Stability of Finite and Infinite Dimensional Systems is to provide new tools for specialists in control system theory, stability theory of ordinary and partial differential equations, and differential-delay equations. Stability of Finite and Infinite Dimensional Systems is the first book that gives a systematic exposition of the approach to stability analysis which is based on estimates for matrix-valued and operator-valued functions, allowing us to investigate various classes of finite and infinite dimensional systems from the unified viewpoint. This book contains solutions to the problems connected with the Aizerman and generalized Aizerman conjectures and presents fundamental results by A. Yu. Levin for the stability of nonautonomous systems having variable real characteristic roots. Stability of Finite and Infinite Dimensional Systems is intended not only for specialists in stability theory, but for anyone interested in various applications who has had at least a first-year graduate-level course in analysis.
Stability of Infinite Dimensional Stochastic Differential Equations with Applications
Title | Stability of Infinite Dimensional Stochastic Differential Equations with Applications PDF eBook |
Author | Kai Liu |
Publisher | CRC Press |
Pages | 311 |
Release | 2005-08-23 |
Genre | Mathematics |
ISBN | 1420034820 |
Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well establ
Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
Title | Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces PDF eBook |
Author | Birgit Jacob |
Publisher | Springer Science & Business Media |
Pages | 221 |
Release | 2012-06-13 |
Genre | Science |
ISBN | 3034803990 |
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the first textbook on infinite-dimensional port-Hamiltonian systems. An abstract functional analytical approach is combined with the physical approach to Hamiltonian systems. This combined approach leads to easily verifiable conditions for well-posedness and stability. The book is accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Moreover, the theory is illustrated by many worked-out examples.
An Introduction to Infinite-Dimensional Linear Systems Theory
Title | An Introduction to Infinite-Dimensional Linear Systems Theory PDF eBook |
Author | Ruth F. Curtain |
Publisher | Springer Science & Business Media |
Pages | 714 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 146124224X |
Infinite dimensional systems is now an established area of research. Given the recent trend in systems theory and in applications towards a synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors' primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An important consideration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.
Infinite Dimensional Dynamical Systems
Title | Infinite Dimensional Dynamical Systems PDF eBook |
Author | John Mallet-Paret |
Publisher | Springer Science & Business Media |
Pages | 495 |
Release | 2012-10-11 |
Genre | Mathematics |
ISBN | 1461445221 |
This collection covers a wide range of topics of infinite dimensional dynamical systems generated by parabolic partial differential equations, hyperbolic partial differential equations, solitary equations, lattice differential equations, delay differential equations, and stochastic differential equations. Infinite dimensional dynamical systems are generated by evolutionary equations describing the evolutions in time of systems whose status must be depicted in infinite dimensional phase spaces. Studying the long-term behaviors of such systems is important in our understanding of their spatiotemporal pattern formation and global continuation, and has been among major sources of motivation and applications of new developments of nonlinear analysis and other mathematical theories. Theories of the infinite dimensional dynamical systems have also found more and more important applications in physical, chemical, and life sciences. This book collects 19 papers from 48 invited lecturers to the International Conference on Infinite Dimensional Dynamical Systems held at York University, Toronto, in September of 2008. As the conference was dedicated to Professor George Sell from University of Minnesota on the occasion of his 70th birthday, this collection reflects the pioneering work and influence of Professor Sell in a few core areas of dynamical systems, including non-autonomous dynamical systems, skew-product flows, invariant manifolds theory, infinite dimensional dynamical systems, approximation dynamics, and fluid flows.
Infinite Dimensional Optimization and Control Theory
Title | Infinite Dimensional Optimization and Control Theory PDF eBook |
Author | Hector O. Fattorini |
Publisher | Cambridge University Press |
Pages | 828 |
Release | 1999-03-28 |
Genre | Computers |
ISBN | 9780521451253 |
Treats optimal problems for systems described by ODEs and PDEs, using an approach that unifies finite and infinite dimensional nonlinear programming.