Stability of Operators and Operator Semigroups
Title | Stability of Operators and Operator Semigroups PDF eBook |
Author | Tanja Eisner |
Publisher | Birkhäuser |
Pages | 208 |
Release | 2019-10-01 |
Genre | Mathematics |
ISBN | 3034601956 |
The asymptotic behaviour, in particular "stability" in some sense, is studied systematically for discrete and for continuous linear dynamical systems on Banach spaces. Of particular concern is convergence to an equilibrium with respect to various topologies. Parallels and differences between the discrete and the continuous situation are emphasised.
Observation and Control for Operator Semigroups
Title | Observation and Control for Operator Semigroups PDF eBook |
Author | Marius Tucsnak |
Publisher | Springer Science & Business Media |
Pages | 488 |
Release | 2009-03-13 |
Genre | Mathematics |
ISBN | 3764389931 |
This book studies observation and control operators for linear systems where the free evolution of the state can be described by an operator semigroup on a Hilbert space. It includes a large number of examples coming mostly from partial differential equations.
A Short Course on Operator Semigroups
Title | A Short Course on Operator Semigroups PDF eBook |
Author | Klaus-Jochen Engel |
Publisher | Springer Science & Business Media |
Pages | 257 |
Release | 2006-06-06 |
Genre | Mathematics |
ISBN | 0387313419 |
The book offers a direct and up-to-date introduction to the theory of one-parameter semigroups of linear operators on Banach spaces. The book is intended for students and researchers who want to become acquainted with the concept of semigroups.
Positive Operator Semigroups
Title | Positive Operator Semigroups PDF eBook |
Author | András Bátkai |
Publisher | Birkhäuser |
Pages | 366 |
Release | 2017-02-13 |
Genre | Mathematics |
ISBN | 3319428136 |
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
Perturbation theory for linear operators
Title | Perturbation theory for linear operators PDF eBook |
Author | Tosio Kato |
Publisher | Springer Science & Business Media |
Pages | 610 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 3662126788 |
One-Parameter Semigroups for Linear Evolution Equations
Title | One-Parameter Semigroups for Linear Evolution Equations PDF eBook |
Author | Klaus-Jochen Engel |
Publisher | Springer Science & Business Media |
Pages | 609 |
Release | 2006-04-06 |
Genre | Mathematics |
ISBN | 0387226427 |
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
Operator Theoretic Aspects of Ergodic Theory
Title | Operator Theoretic Aspects of Ergodic Theory PDF eBook |
Author | Tanja Eisner |
Publisher | Springer |
Pages | 630 |
Release | 2015-11-18 |
Genre | Mathematics |
ISBN | 3319168983 |
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory