Spin Coherence in Silicon/silicon-germanium Nanostructures

Spin Coherence in Silicon/silicon-germanium Nanostructures
Title Spin Coherence in Silicon/silicon-germanium Nanostructures PDF eBook
Author James L. Truitt
Publisher
Pages 148
Release 2004
Genre
ISBN

Download Spin Coherence in Silicon/silicon-germanium Nanostructures Book in PDF, Epub and Kindle

Silicon-Germanium (SiGe) Nanostructures

Silicon-Germanium (SiGe) Nanostructures
Title Silicon-Germanium (SiGe) Nanostructures PDF eBook
Author Y. Shiraki
Publisher Elsevier
Pages 649
Release 2011-02-26
Genre Technology & Engineering
ISBN 0857091425

Download Silicon-Germanium (SiGe) Nanostructures Book in PDF, Epub and Kindle

Nanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and modelling. Part three covers the material properties of SiGe nanostructures, including chapters on such topics as strain-induced defects, transport properties and microcavities and quantum cascade laser structures. In Part four, devices utilising SiGe alloys are discussed. Chapters cover ultra large scale integrated applications, MOSFETs and the use of SiGe in different types of transistors and optical devices. With its distinguished editors and team of international contributors, Silicon-germanium (SiGe) nanostructures is a standard reference for researchers focusing on semiconductor devices and materials in industry and academia, particularly those interested in nanostructures. Reviews the materials science of nanostructures and their properties and applications in different electronic devices Assesses the structural properties of SiGe nanostructures, discussing electronic band structures of SiGe alloys Explores the formation of SiGe nanostructuresfeaturing different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition

Spin Coherence in Semiconductor Nanostructures

Spin Coherence in Semiconductor Nanostructures
Title Spin Coherence in Semiconductor Nanostructures PDF eBook
Author
Publisher
Pages 22
Release 2006
Genre
ISBN

Download Spin Coherence in Semiconductor Nanostructures Book in PDF, Epub and Kindle

We report progress in calculations of spin coherence and spin transport properties in nanoscale geometries, including calculations of g-factors in quantum dots, exchange interactions in Si/Ge quantum dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors. Our new proposal for electron-spin based teleportation is mediated by single photons and does not require correlated photon detection (Bell detection). We find that electric transport in nonmagnetic semiconductors is unstable to the formation of spin polarized packets at room temperature. We also predict that orbital angular momentum quenching in quantum dots will drive g factors closer to 2 than previously expected. These calculations may be of use in semiconductor spintronic devices or quantum computation.

Silicon-Germanium (SiGe) Nanostructures

Silicon-Germanium (SiGe) Nanostructures
Title Silicon-Germanium (SiGe) Nanostructures PDF eBook
Author Y. Shiraki
Publisher Woodhead Publishing
Pages 656
Release 2016-09-02
Genre Technology & Engineering
ISBN 9780081017395

Download Silicon-Germanium (SiGe) Nanostructures Book in PDF, Epub and Kindle

Nanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices. The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and modelling. Part three covers the material properties of SiGe nanostructures, including chapters on such topics as strain-induced defects, transport properties and microcavities and quantum cascade laser structures. In Part four, devices utilising SiGe alloys are discussed. Chapters cover ultra large scale integrated applications, MOSFETs and the use of SiGe in different types of transistors and optical devices. With its distinguished editors and team of international contributors, Silicon-germanium (SiGe) nanostructures is a standard reference for researchers focusing on semiconductor devices and materials in industry and academia, particularly those interested in nanostructures. Reviews the materials science of nanostructures and their properties and applications in different electronic devices Assesses the structural properties of SiGe nanostructures, discussing electronic band structures of SiGe alloys Explores the formation of SiGe nanostructuresfeaturing different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition

Quantum Devices in SI/SiGe Heterostructures

Quantum Devices in SI/SiGe Heterostructures
Title Quantum Devices in SI/SiGe Heterostructures PDF eBook
Author Keith A. Slinker
Publisher
Pages 142
Release 2006
Genre
ISBN

Download Quantum Devices in SI/SiGe Heterostructures Book in PDF, Epub and Kindle

Electronic and Spintronic Transport in Germanium Nanostructures

Electronic and Spintronic Transport in Germanium Nanostructures
Title Electronic and Spintronic Transport in Germanium Nanostructures PDF eBook
Author En-Shao Liu
Publisher
Pages 248
Release 2014
Genre
ISBN

Download Electronic and Spintronic Transport in Germanium Nanostructures Book in PDF, Epub and Kindle

The digital information processing system has benefited tremendously from the invention and development of complementary metal-oxide-semiconductor (CMOS) integrated circuits. The relentless scaling of the physical dimensions of transistors has been consistently delivering improved overall circuit density and performance every technology generation. However, the continuation of this trend is in question for silicon-based transistors when quantum mechanical tunneling becomes more relevant; further scaling in feature sizes can lead to increased leakage current and power dissipation. Numerous research efforts have been implemented to address these scaling challenges, either by aiming to increase the performance at the transistor level or to introduce new functionalities at the circuit level. In the first approach, novel materials and device structures are explored to improve the performance of CMOS transistors, including the use of high-mobility materials (e.g. III-V compounds and germanium) as the channel, and multi-gate structures. On the other hand, the overall circuit capability could be increased if other state variables are exploited in the electronic devices, such as the electron spin degree of freedom (e.g. spintronics). Here we explore the potential of germanium nanowires in both CMOS and beyond-CMOS applications, studying the electronic and spintronic transport in this material system. Germanium is an attractive replacement to silicon as the channel material in CMOS technology, thanks to its lighter effective electron and hole mass. The nanowire structures, directly synthesized using chemical vapor deposition, provide a natural platform for multi-gate structures in which the electrostatic control of the gate is enhanced. We present the realization and scaling properties of germanium-silicon-germanium core-shell nanowire n-type, [omega]-gate field-effect transistors (FETs). By studying the channel length dependence of NW FET characteristics, we conclude that the intrinsic channel resistance is the main limiting factor of the drive current of Ge NW n-FETs. Utilizing the electron spins in semiconductor devices can in principle enhance overall circuit performance and functionalities. Electrical injection of spin-polarized electrons into a semiconductor, large spin diffusion length, and an integration friendly platform are desirable ingredients for spin based-devices. Here we demonstrate lateral spin injection and detection in Ge NWs, by using ferromagnetic metal contacts and tunnel barriers for contact resistance engineering. We map out the contact resistance window for which spin transport is observed, manifestly showing the conductivity matching required for spin injection.

Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines

Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines
Title Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines PDF eBook
Author Munir H. Nayfeh
Publisher Elsevier
Pages 604
Release 2018-06-29
Genre Science
ISBN 0323480586

Download Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines Book in PDF, Epub and Kindle

Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery). Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications. Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers