Speech Recognition Over Digital Channels
Title | Speech Recognition Over Digital Channels PDF eBook |
Author | Antonio Peinado |
Publisher | John Wiley & Sons |
Pages | 274 |
Release | 2006-08-04 |
Genre | Technology & Engineering |
ISBN | 0470024011 |
Automatic speech recognition (ASR) is a very attractive means for human-machine interaction. The degree of maturity reached by speech recognition technologies during recent years allows the development of applications that use them. In particular, ASR shows an enormous potential in mobile environments, where devices such as mobile phones or PDAs are used, and for Internet Protocol (IP) applications. Speech Recognition Over Digital Channels is the first book of its kind to offer a complete system comprehension, addressing the topics of distributed and network-based speech recognition issues and standards, the concepts of speech processing and transmission, and system architectures and robustness. Describes the different client/server architectures for remote speech recognition systems, by means of which the client transmits speech parameters through a digital channel to a remote recognition server Focuses on robustness against both adverse acoustic environments (in the front-end) and bit errors/packet loss Discusses four ETSI standards for distributed speech recognition; the understanding of the standards and the technologies behind them Provides the necessary background for the comprehension of remote speech recognition technologies This book will appeal to a wide-ranging audience: engineers using speech recognition systems, researchers involved in ASR systems and those interested in processing and transmitting speech such as signal processing and communications communities. It will also be of interest to technical experts requiring an understanding of recognition over mobile and IP networks, and postgraduate students working on robust speech processing.
Automatic Speech Recognition on Mobile Devices and over Communication Networks
Title | Automatic Speech Recognition on Mobile Devices and over Communication Networks PDF eBook |
Author | Zheng-Hua Tan |
Publisher | Springer Science & Business Media |
Pages | 408 |
Release | 2008-04-17 |
Genre | Technology & Engineering |
ISBN | 1848001436 |
The advances in computing and networking have sparked an enormous interest in deploying automatic speech recognition on mobile devices and over communication networks. This book brings together academic researchers and industrial practitioners to address the issues in this emerging realm and presents the reader with a comprehensive introduction to the subject of speech recognition in devices and networks. It covers network, distributed and embedded speech recognition systems.
Techniques for Noise Robustness in Automatic Speech Recognition
Title | Techniques for Noise Robustness in Automatic Speech Recognition PDF eBook |
Author | Tuomas Virtanen |
Publisher | John Wiley & Sons |
Pages | 514 |
Release | 2012-11-28 |
Genre | Technology & Engineering |
ISBN | 1119970881 |
Automatic speech recognition (ASR) systems are finding increasing use in everyday life. Many of the commonplace environments where the systems are used are noisy, for example users calling up a voice search system from a busy cafeteria or a street. This can result in degraded speech recordings and adversely affect the performance of speech recognition systems. As the use of ASR systems increases, knowledge of the state-of-the-art in techniques to deal with such problems becomes critical to system and application engineers and researchers who work with or on ASR technologies. This book presents a comprehensive survey of the state-of-the-art in techniques used to improve the robustness of speech recognition systems to these degrading external influences. Key features: Reviews all the main noise robust ASR approaches, including signal separation, voice activity detection, robust feature extraction, model compensation and adaptation, missing data techniques and recognition of reverberant speech. Acts as a timely exposition of the topic in light of more widespread use in the future of ASR technology in challenging environments. Addresses robustness issues and signal degradation which are both key requirements for practitioners of ASR. Includes contributions from top ASR researchers from leading research units in the field
Speech Recognition
Title | Speech Recognition PDF eBook |
Author | France Mihelič |
Publisher | BoD – Books on Demand |
Pages | 580 |
Release | 2008-11-01 |
Genre | Computers |
ISBN | 953761929X |
Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes.
Speech Processing in Mobile Environments
Title | Speech Processing in Mobile Environments PDF eBook |
Author | K. Sreenivasa Rao |
Publisher | Springer Science & Business Media |
Pages | 129 |
Release | 2014-01-28 |
Genre | Technology & Engineering |
ISBN | 3319031163 |
This book focuses on speech processing in the presence of low-bit rate coding and varying background environments. The methods presented in the book exploit the speech events which are robust in noisy environments. Accurate estimation of these crucial events will be useful for carrying out various speech tasks such as speech recognition, speaker recognition and speech rate modification in mobile environments. The authors provide insights into designing and developing robust methods to process the speech in mobile environments. Covering temporal and spectral enhancement methods to minimize the effect of noise and examining methods and models on speech and speaker recognition applications in mobile environments.
Robust Speech Recognition of Uncertain or Missing Data
Title | Robust Speech Recognition of Uncertain or Missing Data PDF eBook |
Author | Dorothea Kolossa |
Publisher | Springer Science & Business Media |
Pages | 387 |
Release | 2011-07-14 |
Genre | Technology & Engineering |
ISBN | 3642213170 |
Automatic speech recognition suffers from a lack of robustness with respect to noise, reverberation and interfering speech. The growing field of speech recognition in the presence of missing or uncertain input data seeks to ameliorate those problems by using not only a preprocessed speech signal but also an estimate of its reliability to selectively focus on those segments and features that are most reliable for recognition. This book presents the state of the art in recognition in the presence of uncertainty, offering examples that utilize uncertainty information for noise robustness, reverberation robustness, simultaneous recognition of multiple speech signals, and audiovisual speech recognition. The book is appropriate for scientists and researchers in the field of speech recognition who will find an overview of the state of the art in robust speech recognition, professionals working in speech recognition who will find strategies for improving recognition results in various conditions of mismatch, and lecturers of advanced courses on speech processing or speech recognition who will find a reference and a comprehensive introduction to the field. The book assumes an understanding of the fundamentals of speech recognition using Hidden Markov Models.
Automatic Speech Recognition
Title | Automatic Speech Recognition PDF eBook |
Author | Dong Yu |
Publisher | Springer |
Pages | 329 |
Release | 2014-11-11 |
Genre | Technology & Engineering |
ISBN | 1447157796 |
This book provides a comprehensive overview of the recent advancement in the field of automatic speech recognition with a focus on deep learning models including deep neural networks and many of their variants. This is the first automatic speech recognition book dedicated to the deep learning approach. In addition to the rigorous mathematical treatment of the subject, the book also presents insights and theoretical foundation of a series of highly successful deep learning models.