Introduction to Spectral Theory

Introduction to Spectral Theory
Title Introduction to Spectral Theory PDF eBook
Author P.D. Hislop
Publisher Springer Science & Business Media
Pages 331
Release 2012-12-06
Genre Technology & Engineering
ISBN 146120741X

Download Introduction to Spectral Theory Book in PDF, Epub and Kindle

The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.

Spectral Theory of Random Schrödinger Operators

Spectral Theory of Random Schrödinger Operators
Title Spectral Theory of Random Schrödinger Operators PDF eBook
Author R. Carmona
Publisher Springer Science & Business Media
Pages 611
Release 2012-12-06
Genre Mathematics
ISBN 1461244889

Download Spectral Theory of Random Schrödinger Operators Book in PDF, Epub and Kindle

Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.

Schrödinger Operators, Spectral Analysis and Number Theory

Schrödinger Operators, Spectral Analysis and Number Theory
Title Schrödinger Operators, Spectral Analysis and Number Theory PDF eBook
Author Sergio Albeverio
Publisher Springer Nature
Pages 316
Release 2021-06-03
Genre Mathematics
ISBN 3030684903

Download Schrödinger Operators, Spectral Analysis and Number Theory Book in PDF, Epub and Kindle

This book gives its readers a unique opportunity to get acquainted with new aspects of the fruitful interactions between Analysis, Geometry, Quantum Mechanics and Number Theory. The present book contains a number of contributions by specialists in these areas as an homage to the memory of the mathematician Erik Balslev and, at the same time, advancing a fascinating interdisciplinary area still full of potential. Erik Balslev has made original and important contributions to several areas of Mathematics and its applications. He belongs to the founders of complex scaling, one of the most important methods in the mathematical and physical study of eigenvalues and resonances of Schrödinger operators, which has been very essential in advancing the solution of fundamental problems in Quantum Mechanics and related areas. He was also a pioneer in making available and developing spectral methods in the study of important problems in Analytic Number Theory.

Partial Differential Equations VII

Partial Differential Equations VII
Title Partial Differential Equations VII PDF eBook
Author M.A. Shubin
Publisher Springer Science & Business Media
Pages 278
Release 2013-03-09
Genre Mathematics
ISBN 3662067196

Download Partial Differential Equations VII Book in PDF, Epub and Kindle

This EMS volume contains a survey of the principles and advanced techniques of the spectral theory of linear differential and pseudodifferential operators in finite-dimensional spaces. Also including a special section of Sunada's recent solution of Kac's celebrated problem of whether or not "one can hear the shape of a drum".

Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics
Title Mathematical Methods in Quantum Mechanics PDF eBook
Author Gerald Teschl
Publisher American Mathematical Soc.
Pages 322
Release 2009
Genre Mathematics
ISBN 0821846604

Download Mathematical Methods in Quantum Mechanics Book in PDF, Epub and Kindle

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).

Spectral Theory of Ordinary Differential Operators

Spectral Theory of Ordinary Differential Operators
Title Spectral Theory of Ordinary Differential Operators PDF eBook
Author Joachim Weidmann
Publisher Springer
Pages 310
Release 2006-11-15
Genre Mathematics
ISBN 3540479120

Download Spectral Theory of Ordinary Differential Operators Book in PDF, Epub and Kindle

These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including the spectral theory one partical Schrödinger and Dirac operators with spherically symmetric potentials. The methods of proof are functionally analytic wherever possible.

Spectral Theory of Schrodinger Operators

Spectral Theory of Schrodinger Operators
Title Spectral Theory of Schrodinger Operators PDF eBook
Author Rafael del Río
Publisher American Mathematical Soc.
Pages 264
Release 2004
Genre Mathematics
ISBN 0821832972

Download Spectral Theory of Schrodinger Operators Book in PDF, Epub and Kindle

This volume gathers the articles based on a series of lectures from a workshop held at the Institute of Applied Mathematics of the National University of Mexico. The aim of the book is to present to a non-specialized audience the basic tools needed to understand and appreciate new trends of research on Schrodinger operator theory. Topics discussed include various aspects of the spectral theory of differential operators, the theory of self-adjoint operators, finite rank perturbations, spectral properties of random Schrodinger operators, and scattering theory for Schrodinger operators. The material is suitable for graduate students and research mathematicians interested in differential operators, in particular, spectral theory of Schrodinger operators.