Introduction to Spectral Analysis
Title | Introduction to Spectral Analysis PDF eBook |
Author | Petre Stoica |
Publisher | Pearson Education |
Pages | 358 |
Release | 1997 |
Genre | Mathematics |
ISBN |
This book presents an introduction to spectral analysis that is designed for either course use or self-study. Clear and concise in approach, it develops a firm understanding of tools and techniques as well as a solid background for performing research. Topics covered include nonparametric spectrum analysis (both periodogram-based approaches and filter- bank approaches), parametric spectral analysis using rational spectral models (AR, MA, and ARMA models), parametric method for line spectra, and spatial (array) signal processing. Analytical and Matlab-based computer exercises are included to develop both analytical skills and hands-on experience.
Spectral Analysis of Signals
Title | Spectral Analysis of Signals PDF eBook |
Author | Yanwei Wang |
Publisher | Morgan & Claypool Publishers |
Pages | 108 |
Release | 2005 |
Genre | Computers |
ISBN | 1598290002 |
Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.
Digital Signal Processing and Spectral Analysis for Scientists
Title | Digital Signal Processing and Spectral Analysis for Scientists PDF eBook |
Author | Silvia Maria Alessio |
Publisher | Springer |
Pages | 909 |
Release | 2015-12-09 |
Genre | Technology & Engineering |
ISBN | 3319254685 |
This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
Digital Spectral Analysis
Title | Digital Spectral Analysis PDF eBook |
Author | S. Lawrence Marple, Jr. |
Publisher | Courier Dover Publications |
Pages | 435 |
Release | 2019-03-20 |
Genre | Technology & Engineering |
ISBN | 048678052X |
Digital Spectral Analysis offers a broad perspective of spectral estimation techniques and their implementation. Coverage includes spectral estimation of discrete-time or discrete-space sequences derived by sampling continuous-time or continuous-space signals. The treatment emphasizes the behavior of each spectral estimator for short data records and provides over 40 techniques described and available as implemented MATLAB functions. In addition to summarizing classical spectral estimation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. Topics include Prony's method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods. Suitable for advanced undergraduates and graduate students of electrical engineering — and for scientific use in the signal processing application community outside of universities — the treatment's prerequisites include some knowledge of discrete-time linear system and transform theory, introductory probability and statistics, and linear algebra. 1987 edition.
Singular Spectrum Analysis of Biomedical Signals
Title | Singular Spectrum Analysis of Biomedical Signals PDF eBook |
Author | Saeid Sanei |
Publisher | CRC Press |
Pages | 270 |
Release | 2015-12-23 |
Genre | Medical |
ISBN | 1466589280 |
Recent advancements in signal processing and computerised methods are expected to underpin the future progress of biomedical research and technology, particularly in measuring and assessing signals and images from the human body. This book focuses on singular spectrum analysis (SSA), an effective approach for single channel signal analysis, and its
Quantum-Mechanical Signal Processing and Spectral Analysis
Title | Quantum-Mechanical Signal Processing and Spectral Analysis PDF eBook |
Author | Dzevad Belkic |
Publisher | CRC Press |
Pages | 486 |
Release | 2019-08-22 |
Genre | Mathematics |
ISBN | 9781420033601 |
Quantum-Mechanical Signal Processing and Spectral Analysis describes the novel application of quantum mechanical methods to signal processing across a range of interdisciplinary research fields. Conventionally, signal processing is viewed as an engineering discipline with its own specific scope, methods, concerns and priorities, not usually encompassing quantum mechanics. However, the dynamics of systems that generate time signals can be successfully described by the general principles and methods of quantum physics, especially within the Schroedinger framework. Most time signals that are measured experimentally are mathematically equivalent to quantum-mechanical auto-correlation functions built from the evolution operator and wavefunctions. This fact allows us to apply the rich conceptual strategies and mathematical apparatus of quantum mechanics to signal processing. Among the leading quantum-mechanical signal processing methods, this book emphasizes the role of Pade approximant and the Lanczos algorithm, highlighting the major benefits of their combination. These two methods are carefully incorporated within a unified framework of scattering and spectroscopy, developing an algorithmic power that can be exported to other disciplines. The novelty of the author's approach to key signal processing problems, the harmonic inversion and the moment problem, is in establishing the Pade approximant and Lanczos algorithm as entirely algerbraic spectral estimators. This is of paramount theoretical and practical importance, as now spectral analysis can be carried out from closed analytical expressions. This overrides the notorious mathematical ill-conditioning problems with round-off errors that plague inverse reconstructions in those fields that rely upon signal processing. Quantum-Mechanical Signal Processing and Spectral Analysis will be an invaluable resource for researchers involved in signal processing across a wide range of disciplines.
Digital Signal Processing
Title | Digital Signal Processing PDF eBook |
Author | K. Deergha Rao |
Publisher | Springer |
Pages | 804 |
Release | 2018-04-14 |
Genre | Mathematics |
ISBN | 981108081X |
The book provides a comprehensive exposition of all major topics in digital signal processing (DSP). With numerous illustrative examples for easy understanding of the topics, it also includes MATLAB-based examples with codes in order to encourage the readers to become more confident of the fundamentals and to gain insights into DSP. Further, it presents real-world signal processing design problems using MATLAB and programmable DSP processors. In addition to problems that require analytical solutions, it discusses problems that require solutions using MATLAB at the end of each chapter. Divided into 13 chapters, it addresses many emerging topics, which are not typically found in advanced texts on DSP. It includes a chapter on adaptive digital filters used in the signal processing problems for faster acceptable results in the presence of changing environments and changing system requirements. Moreover, it offers an overview of wavelets, enabling readers to easily understand the basics and applications of this powerful mathematical tool for signal and image processing. The final chapter explores DSP processors, which is an area of growing interest for researchers. A valuable resource for undergraduate and graduate students, it can also be used for self-study by researchers, practicing engineers and scientists in electronics, communications, and computer engineering as well as for teaching one- to two-semester courses.