Astrophysics at Very High Energies
Title | Astrophysics at Very High Energies PDF eBook |
Author | Felix Aharonian |
Publisher | Springer Science & Business Media |
Pages | 369 |
Release | 2013-04-04 |
Genre | Science |
ISBN | 364236134X |
With the success of Cherenkov Astronomy and more recently with the launch of NASA’s Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergström presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.
Essential Radio Astronomy
Title | Essential Radio Astronomy PDF eBook |
Author | James J. Condon |
Publisher | Princeton University Press |
Pages | 376 |
Release | 2016-04-05 |
Genre | Science |
ISBN | 069113779X |
The ideal text for a one-semester course in radio astronomy Essential Radio Astronomy is the only textbook on the subject specifically designed for a one-semester introductory course for advanced undergraduates or graduate students in astronomy and astrophysics. It starts from first principles in order to fill gaps in students' backgrounds, make teaching easier for professors who are not expert radio astronomers, and provide a useful reference to the essential equations used by practitioners. This unique textbook reflects the fact that students of multiwavelength astronomy typically can afford to spend only one semester studying the observational techniques particular to each wavelength band. Essential Radio Astronomy presents only the most crucial concepts—succinctly and accessibly. It covers the general principles behind radio telescopes, receivers, and digital backends without getting bogged down in engineering details. Emphasizing the physical processes in radio sources, the book's approach is shaped by the view that radio astrophysics owes more to thermodynamics than electromagnetism. Proven in the classroom and generously illustrated throughout, Essential Radio Astronomy is an invaluable resource for students and researchers alike. The only textbook specifically designed for a one-semester course in radio astronomy Starts from first principles Makes teaching easier for astronomy professors who are not expert radio astronomers Emphasizes the physical processes in radio sources Covers the principles behind radio telescopes and receivers Provides the essential equations and fundamental constants used by practitioners Supplementary website includes lecture notes, problem sets, exams, and links to interactive demonstrations An online illustration package is available to professors
Technical Memorandums
Title | Technical Memorandums PDF eBook |
Author | United States. National Advisory Committee for Aeronautics |
Publisher | |
Pages | 404 |
Release | |
Genre | Aeronautics |
ISBN |
Chiefly translations from foreign aeronautical journals.
Geometric and Ergodic Aspects of Group Actions
Title | Geometric and Ergodic Aspects of Group Actions PDF eBook |
Author | S. G. Dani |
Publisher | Springer Nature |
Pages | 176 |
Release | 2020-01-13 |
Genre | Mathematics |
ISBN | 9811506833 |
This book gathers papers on recent advances in the ergodic theory of group actions on homogeneous spaces and on geometrically finite hyperbolic manifolds presented at the workshop “Geometric and Ergodic Aspects of Group Actions,” organized by the Tata Institute of Fundamental Research, Mumbai, India, in 2018. Written by eminent scientists, and providing clear, detailed accounts of various topics at the interface of ergodic theory, the theory of homogeneous dynamics, and the geometry of hyperbolic surfaces, the book is a valuable resource for researchers and advanced graduate students in mathematics.
Revealing the Most Energetic Light from Pulsars and Their Nebulae
Title | Revealing the Most Energetic Light from Pulsars and Their Nebulae PDF eBook |
Author | David Carreto Fidalgo |
Publisher | Springer |
Pages | 213 |
Release | 2019-07-17 |
Genre | Science |
ISBN | 3030241947 |
This book reports on the extraordinary observation of TeV gamma rays from the Crab Pulsar, the most energetic light ever detected from this type of object. It presents detailed information on the painstaking analysis of the unprecedentedly large dataset from the MAGIC telescopes, and comprehensively discusses the implications of pulsed TeV gamma rays for state-of-the-art pulsar emission models. Using these results, the book subsequently explores new testing methodologies for Lorentz Invariance Violation, in terms of a wavelength-dependent speed of light. The book also covers an updated search for Very-High-Energy (VHE), >100 GeV, emissions from millisecond pulsars using the Large Area Telescope on board the Fermi satellite, as well as a study on the promising Pulsar Wind Nebula candidate PSR J0631. The observation of VHE gamma rays is essential to studying the non-thermal sources of radiation in our Universe. Rotating neutron stars, also known as pulsars, are an extreme source class known to emit VHE gamma rays. However, to date only two pulsars have been detected with emissions above 100 GeV, and our understanding of their emission mechanism is still lacking.
Modelling Pulsar Wind Nebulae
Title | Modelling Pulsar Wind Nebulae PDF eBook |
Author | Diego F. Torres |
Publisher | Springer |
Pages | 318 |
Release | 2017-11-13 |
Genre | Science |
ISBN | 3319630318 |
In view of the current and forthcoming observational data on pulsar wind nebulae, this book offers an assessment of the theoretical state of the art of modelling them. The expert authors also review the observational status of the field and provide an outlook for future developments. During the last few years, significant progress on the study of pulsar wind nebulae (PWNe) has been attained both from a theoretical and an observational perspective, perhaps focusing on the closest, more energetic, and best studied nebula: the Crab, which appears in the cover. Now, the number of TeV detected PWNe is similar to the number of characterized nebulae observed at other frequencies over decades of observations. And in just a few years, the Cherenkov Telescope Array will increase this number to several hundreds, actually providing an essentially complete account of TeV emitting PWNe in the Galaxy. At the other end of the multi-frequency spectrum, the SKA and its pathfinder instruments, will reveal thousands of new pulsars, and map in exquisite detail the radiation surrounding them for several hundreds of nebulae. By carefully reviewing the state of the art in pulsar nebula research this book prepares scientists and PhD students for future work and progress in the field.
Complex Plasmas
Title | Complex Plasmas PDF eBook |
Author | Michael Bonitz |
Publisher | Springer Science & Business Media |
Pages | 495 |
Release | 2014-04-09 |
Genre | Science |
ISBN | 3319054376 |
This book provides the reader with an introduction to the physics of complex plasmas, a discussion of the specific scientific and technical challenges they present and an overview of their potential technological applications. Complex plasmas differ from conventional high-temperature plasmas in several ways: they may contain additional species, including nano meter- to micrometer-sized particles, negative ions, molecules and radicals and they may exhibit strong correlations or quantum effects. This book introduces the classical and quantum mechanical approaches used to describe and simulate complex plasmas. It also covers some key experimental techniques used in the analysis of these plasmas, including calorimetric probe methods, IR absorption techniques and X-ray absorption spectroscopy. The final part of the book reviews the emerging applications of microcavity and microchannel plasmas, the synthesis and assembly of nanomaterials through plasma electrochemistry, the large-scale generation of ozone using microplasmas and novel applications of atmospheric-pressure non-thermal plasmas in dentistry. Going beyond the scope of traditional plasma texts, the presentation is very well suited for senior undergraduate, graduate students and postdoctoral researchers specializing in plasma physics.