Sparse Representation, Modeling and Learning in Visual Recognition
Title | Sparse Representation, Modeling and Learning in Visual Recognition PDF eBook |
Author | Hong Cheng |
Publisher | Springer |
Pages | 259 |
Release | 2015-05-25 |
Genre | Computers |
ISBN | 1447167147 |
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.
Sparse Modeling for Image and Vision Processing
Title | Sparse Modeling for Image and Vision Processing PDF eBook |
Author | Julien Mairal |
Publisher | Now Publishers |
Pages | 216 |
Release | 2014-12-19 |
Genre | Computers |
ISBN | 9781680830088 |
Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.
Deep Learning through Sparse and Low-Rank Modeling
Title | Deep Learning through Sparse and Low-Rank Modeling PDF eBook |
Author | Zhangyang Wang |
Publisher | Academic Press |
Pages | 296 |
Release | 2019-04-12 |
Genre | Computers |
ISBN | 0128136596 |
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Sparse Representation, Modeling and Learning in Visual Recognition
Title | Sparse Representation, Modeling and Learning in Visual Recognition PDF eBook |
Author | Hong Cheng |
Publisher | |
Pages | |
Release | 2015 |
Genre | Computer vision |
ISBN | 9781447167150 |
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: Provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition Describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition Covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers Discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning Includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book Researchers and graduate students interested in computer vision, pattern recognition and robotics will find this work to be an invaluable introduction to techniques of sparse representations and compressive sensing. Dr. Hong Cheng is Professor in the School of Automation Engineering, and Deputy Executive Director of the Center for Robotics at the University of Electronic Science and Technology of China. His other publications include the Springer book Autonomous Intelligent Vehicles.
Computer Vision – ECCV 2012
Title | Computer Vision – ECCV 2012 PDF eBook |
Author | Andrew Fitzgibbon |
Publisher | Springer |
Pages | 909 |
Release | 2012-09-26 |
Genre | Computers |
ISBN | 3642337090 |
The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.
Sparse Coding And Its Applications In Computer Vision
Title | Sparse Coding And Its Applications In Computer Vision PDF eBook |
Author | Zhaowen Wang |
Publisher | World Scientific |
Pages | 239 |
Release | 2015-10-28 |
Genre | Computers |
ISBN | 9814725064 |
This book provides a broader introduction to the theories and applications of sparse coding techniques in computer vision research. It introduces sparse coding in the context of representation learning, illustrates the fundamental concepts, and summarizes the most active research directions. A variety of applications of sparse coding are discussed, ranging from low-level image processing tasks such as super-resolution and de-blurring to high-level semantic understanding tasks such as image recognition, clustering and fusion.The book is suitable to be used as an introductory overview to this field, with its theoretical part being both easy and precious enough for quick understanding. It is also of great value to experienced researchers as it offers new perspective to the underlying mechanism of sparse coding, and points out potential future directions for different applications.
Computer Vision - ACCV 2010
Title | Computer Vision - ACCV 2010 PDF eBook |
Author | Ron Kimmel |
Publisher | Springer |
Pages | 747 |
Release | 2011-02-28 |
Genre | Computers |
ISBN | 3642193099 |
The four-volume set LNCS 6492-6495 constitutes the thoroughly refereed post-proceedings of the 10th Asian Conference on Computer Vision, ACCV 2009, held in Queenstown, New Zealand in November 2010. All together the four volumes present 206 revised papers selected from a total of 739 Submissions. All current issues in computer vision are addressed ranging from algorithms that attempt to automatically understand the content of images, optical methods coupled with computational techniques that enhance and improve images, and capturing and analyzing the world's geometry while preparing the higher level image and shape understanding. Novel geometry techniques, statistical learning methods, and modern algebraic procedures are dealt with as well.