Sparse Modeling

Sparse Modeling
Title Sparse Modeling PDF eBook
Author Irina Rish
Publisher CRC Press
Pages 255
Release 2014-12-01
Genre Business & Economics
ISBN 1439828695

Download Sparse Modeling Book in PDF, Epub and Kindle

Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing. Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field. The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions. The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.

Practical Applications of Sparse Modeling

Practical Applications of Sparse Modeling
Title Practical Applications of Sparse Modeling PDF eBook
Author Irina Rish
Publisher MIT Press
Pages 265
Release 2014-09-12
Genre Computers
ISBN 0262027720

Download Practical Applications of Sparse Modeling Book in PDF, Epub and Kindle

"Sparse modeling is a rapidly developing area at the intersection of statistical learning and signal processing, motivated by the age-old statistical problem of selecting a small number of predictive variables in high-dimensional data sets. This collection describes key approaches in sparse modeling, focusing on its applications in such fields as neuroscience, computational biology, and computer vision. Sparse modeling methods can improve the interpretability of predictive models and aid efficient recovery of high-dimensional unobserved signals from a limited number of measurements. Yet despite significant advances in the field, a number of open issues remain when sparse modeling meets real-life applications. The book discusses a range of practical applications and state-of-the-art approaches for tackling the challenges presented by these applications. Topics considered include the choice of method in genomics applications; analysis of protein mass-spectrometry data; the stability of sparse models in brain imaging applications; sequential testing approaches; algorithmic aspects of sparse recovery; and learning sparse latent models"--Jacket.

Sparse Modeling for Image and Vision Processing

Sparse Modeling for Image and Vision Processing
Title Sparse Modeling for Image and Vision Processing PDF eBook
Author Julien Mairal
Publisher Now Publishers
Pages 216
Release 2014-12-19
Genre Computers
ISBN 9781680830088

Download Sparse Modeling for Image and Vision Processing Book in PDF, Epub and Kindle

Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Sparse Modeling

Sparse Modeling
Title Sparse Modeling PDF eBook
Author Irina Rish
Publisher CRC Press
Pages 250
Release 2014-12-01
Genre Business & Economics
ISBN 1439828709

Download Sparse Modeling Book in PDF, Epub and Kindle

Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.Sparse Modeling: Theory, Algorithms, and Applications provides an introduction t

Deep Learning through Sparse and Low-Rank Modeling

Deep Learning through Sparse and Low-Rank Modeling
Title Deep Learning through Sparse and Low-Rank Modeling PDF eBook
Author Zhangyang Wang
Publisher Academic Press
Pages 296
Release 2019-04-12
Genre Computers
ISBN 0128136596

Download Deep Learning through Sparse and Low-Rank Modeling Book in PDF, Epub and Kindle

Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.

Sparse and Redundant Representations

Sparse and Redundant Representations
Title Sparse and Redundant Representations PDF eBook
Author Michael Elad
Publisher Springer Science & Business Media
Pages 376
Release 2010-08-12
Genre Mathematics
ISBN 1441970118

Download Sparse and Redundant Representations Book in PDF, Epub and Kindle

A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham’s razor: “Entities should not be multiplied without neces sity. ” This principle enabled scientists to select the ”best” physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage“spoken”whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the “language” or “dictionary” used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you’ll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.

Sparsity Methods for Systems and Control

Sparsity Methods for Systems and Control
Title Sparsity Methods for Systems and Control PDF eBook
Author Masaaki Nagahara
Publisher
Pages 220
Release 2020-09-30
Genre
ISBN 9781680837247

Download Sparsity Methods for Systems and Control Book in PDF, Epub and Kindle

The method of sparsity has been attracting a lot of attention in the fields related not only to signal processing, machine learning, and statistics, but also systems and control. The method is known as compressed sensing, compressive sampling, sparse representation, or sparse modeling. More recently, the sparsity method has been applied to systems and control to design resource-aware control systems. This book gives a comprehensive guide to sparsity methods for systems and control, from standard sparsity methods in finite-dimensional vector spaces (Part I) to optimal control methods in infinite-dimensional function spaces (Part II). The primary objective of this book is to show how to use sparsity methods for several engineering problems. For this, the author provides MATLAB programs by which the reader can try sparsity methods for themselves. Readers will obtain a deep understanding of sparsity methods by running these MATLAB programs. Sparsity Methods for Systems and Control is suitable for graduate level university courses, though it should also be comprehendible to undergraduate students who have a basic knowledge of linear algebra and elementary calculus. Also, especially part II of the book should appeal to professional researchers and engineers who are interested in applying sparsity methods to systems and control.