Soliton Equations And Hamiltonian Systems (Second Edition)
Title | Soliton Equations And Hamiltonian Systems (Second Edition) PDF eBook |
Author | Leonid A Dickey |
Publisher | World Scientific |
Pages | 421 |
Release | 2003-01-17 |
Genre | Science |
ISBN | 9814487422 |
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.Besides its obvious practical use, this theory is attractive also because it satisfies the aesthetic need in a beautiful formula which is so inherent to mathematics.The second edition is up-to-date and differs from the first one considerably. One third of the book (five chapters) is completely new and the rest is refreshed and edited.
Soliton Equations and Hamiltonian Systems
Title | Soliton Equations and Hamiltonian Systems PDF eBook |
Author | Leonid A. Dickey |
Publisher | World Scientific |
Pages | 421 |
Release | 2003 |
Genre | Science |
ISBN | 9812381732 |
The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.Besides its obvious practical use, this theory is attractive also because it satisfies the aesthetic need in a beautiful formula which is so inherent to mathematics.The second edition is up-to-date and differs from the first one considerably. One third of the book (five chapters) is completely new and the rest is refreshed and edited.
Soliton Equations And Hamiltonian Systems
Title | Soliton Equations And Hamiltonian Systems PDF eBook |
Author | Leonid A Dickey |
Publisher | World Scientific |
Pages | 322 |
Release | 1991-09-02 |
Genre | Science |
ISBN | 9813104341 |
The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.This branch of science is attractive because it is one of those which revives the interest in the basic principles of mathematics, a beautiful formula.
Integrable Systems and Algebraic Geometry
Title | Integrable Systems and Algebraic Geometry PDF eBook |
Author | Ron Donagi |
Publisher | Cambridge University Press |
Pages | 537 |
Release | 2020-03-02 |
Genre | Mathematics |
ISBN | 110871577X |
A collection of articles discussing integrable systems and algebraic geometry from leading researchers in the field.
Integrable Systems and Algebraic Geometry: Volume 2
Title | Integrable Systems and Algebraic Geometry: Volume 2 PDF eBook |
Author | Ron Donagi |
Publisher | Cambridge University Press |
Pages | 537 |
Release | 2020-04-02 |
Genre | Mathematics |
ISBN | 1108805337 |
Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.
Discrete Systems and Integrability
Title | Discrete Systems and Integrability PDF eBook |
Author | J. Hietarinta |
Publisher | Cambridge University Press |
Pages | 461 |
Release | 2016-09 |
Genre | Mathematics |
ISBN | 1107042720 |
A first introduction to the theory of discrete integrable systems at a level suitable for students and non-experts.
The Diverse World of PDEs
Title | The Diverse World of PDEs PDF eBook |
Author | I. S. Krasil′shchik |
Publisher | American Mathematical Society |
Pages | 250 |
Release | 2023-08-21 |
Genre | Mathematics |
ISBN | 1470471477 |
This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at the Independent University of Moscow and Moscow State University, Moscow, Russia. The papers are devoted to various interrelations of nonlinear PDEs with geometry and integrable systems. The topics discussed are: gravitational and electromagnetic fields in General Relativity, nonlocal geometry of PDEs, Legendre foliated cocycles on contact manifolds, presymplectic gauge PDEs and Lagrangian BV formalism, jet geometry and high-order phase transitions, bi-Hamiltonian structures of KdV type, bundles of Weyl structures, Lax representations via twisted extensions of Lie algebras, energy functionals and normal forms of knots, and differential invariants of inviscid flows. The companion volume (Contemporary Mathematics, Volume 789) is devoted to Algebraic and Cohomological Aspects of PDEs.