Software Foundations for Data Interoperability and Large Scale Graph Data Analytics

Software Foundations for Data Interoperability and Large Scale Graph Data Analytics
Title Software Foundations for Data Interoperability and Large Scale Graph Data Analytics PDF eBook
Author Lu Qin
Publisher Springer Nature
Pages 203
Release 2020-11-05
Genre Computers
ISBN 3030611337

Download Software Foundations for Data Interoperability and Large Scale Graph Data Analytics Book in PDF, Epub and Kindle

This book constitutes refereed proceedings of the 4th International Workshop on Software Foundations for Data Interoperability, SFDI 2020, and 2nd International Workshop on Large Scale Graph Data Analytics, LSGDA 2020, held in Conjunction with VLDB 2020, in September 2020. Due to the COVID-19 pandemic the conference was held online. The 11 full papers and 4 short papers were thoroughly reviewed and selected from 38 submissions. The volme presents original research and application papers on the development of novel graph analytics models, scalable graph analytics techniques and systems, data integration, and data exchange.

Model Management and Analytics for Large Scale Systems

Model Management and Analytics for Large Scale Systems
Title Model Management and Analytics for Large Scale Systems PDF eBook
Author Bedir Tekinerdogan
Publisher Academic Press
Pages 346
Release 2019-09-14
Genre Computers
ISBN 0128166509

Download Model Management and Analytics for Large Scale Systems Book in PDF, Epub and Kindle

Model Management and Analytics for Large Scale Systems covers the use of models and related artefacts (such as metamodels and model transformations) as central elements for tackling the complexity of building systems and managing data. With their increased use across diverse settings, the complexity, size, multiplicity and variety of those artefacts has increased. Originally developed for software engineering, these approaches can now be used to simplify the analytics of large-scale models and automate complex data analysis processes. Those in the field of data science will gain novel insights on the topic of model analytics that go beyond both model-based development and data analytics. This book is aimed at both researchers and practitioners who are interested in model-based development and the analytics of large-scale models, ranging from big data management and analytics, to enterprise domains. The book could also be used in graduate courses on model development, data analytics and data management. - Identifies key problems and offers solution approaches and tools that have been developed or are necessary for model management and analytics - Explores basic theory and background, current research topics, related challenges and the research directions for model management and analytics - Provides a complete overview of model management and analytics frameworks, the different types of analytics (descriptive, diagnostics, predictive and prescriptive), the required modelling and method steps, and important future directions

Software Foundations for Data Interoperability

Software Foundations for Data Interoperability
Title Software Foundations for Data Interoperability PDF eBook
Author George Fletcher
Publisher Springer Nature
Pages 116
Release 2022-01-19
Genre Computers
ISBN 3030938492

Download Software Foundations for Data Interoperability Book in PDF, Epub and Kindle

This book constitutes selected papers presented at the 5th International Workshop on Software Foundations for Data Interoperability, SFDI 2021, held in Copenhagen, Denmark, in August 2021. The 4 full papers and one short paper were thorougly reviewed and selected from 8 submissions. They present discussions in research and development in software foundations for data interoperability as well as the applications in real-world systems such as data markets.

Crowdsourcing Geographic Knowledge

Crowdsourcing Geographic Knowledge
Title Crowdsourcing Geographic Knowledge PDF eBook
Author Daniel Sui
Publisher Springer Science & Business Media
Pages 394
Release 2012-08-10
Genre Science
ISBN 9400745877

Download Crowdsourcing Geographic Knowledge Book in PDF, Epub and Kindle

The phenomenon of volunteered geographic information is part of a profound transformation in how geographic data, information, and knowledge are produced and circulated. By situating volunteered geographic information (VGI) in the context of big-data deluge and the data-intensive inquiry, the 20 chapters in this book explore both the theories and applications of crowdsourcing for geographic knowledge production with three sections focusing on 1). VGI, Public Participation, and Citizen Science; 2). Geographic Knowledge Production and Place Inference; and 3). Emerging Applications and New Challenges. This book argues that future progress in VGI research depends in large part on building strong linkages with diverse geographic scholarship. Contributors of this volume situate VGI research in geography’s core concerns with space and place, and offer several ways of addressing persistent challenges of quality assurance in VGI. This book positions VGI as part of a shift toward hybrid epistemologies, and potentially a fourth paradigm of data-intensive inquiry across the sciences. It also considers the implications of VGI and the exaflood for further time-space compression and new forms, degrees of digital inequality, the renewed importance of geography, and the role of crowdsourcing for geographic knowledge production.

Fundamentals of Clinical Data Science

Fundamentals of Clinical Data Science
Title Fundamentals of Clinical Data Science PDF eBook
Author Pieter Kubben
Publisher Springer
Pages 219
Release 2018-12-21
Genre Medical
ISBN 3319997130

Download Fundamentals of Clinical Data Science Book in PDF, Epub and Kindle

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Graph Neural Networks: Foundations, Frontiers, and Applications

Graph Neural Networks: Foundations, Frontiers, and Applications
Title Graph Neural Networks: Foundations, Frontiers, and Applications PDF eBook
Author Lingfei Wu
Publisher Springer Nature
Pages 701
Release 2022-01-03
Genre Computers
ISBN 9811660549

Download Graph Neural Networks: Foundations, Frontiers, and Applications Book in PDF, Epub and Kindle

Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data, such as images or sequence data, and not immediately applicable to graph-structured data such as text. This gap has driven a wave of research for deep learning on graphs, including graph representation learning, graph generation, and graph classification. The new neural network architectures on graph-structured data (graph neural networks, GNNs in short) have performed remarkably on these tasks, demonstrated by applications in social networks, bioinformatics, and medical informatics. Despite these successes, GNNs still face many challenges ranging from the foundational methodologies to the theoretical understandings of the power of the graph representation learning. This book provides a comprehensive introduction of GNNs. It first discusses the goals of graph representation learning and then reviews the history, current developments, and future directions of GNNs. The second part presents and reviews fundamental methods and theories concerning GNNs while the third part describes various frontiers that are built on the GNNs. The book concludes with an overview of recent developments in a number of applications using GNNs. This book is suitable for a wide audience including undergraduate and graduate students, postdoctoral researchers, professors and lecturers, as well as industrial and government practitioners who are new to this area or who already have some basic background but want to learn more about advanced and promising techniques and applications.

Big Data Analytics for Internet of Things

Big Data Analytics for Internet of Things
Title Big Data Analytics for Internet of Things PDF eBook
Author Tausifa Jan Saleem
Publisher John Wiley & Sons
Pages 402
Release 2021-04-20
Genre Mathematics
ISBN 1119740754

Download Big Data Analytics for Internet of Things Book in PDF, Epub and Kindle

BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources that address key techniques in the analysis of IoT data. The book demonstrates how to select the appropriate techniques to unearth valuable insights from IoT data and offers novel designs for IoT systems. With an abiding focus on practical strategies with concrete applications for data analysts and IoT professionals, Big Data Analytics for Internet of Things also offers readers: A thorough introduction to the Internet of Things, including IoT architectures, enabling technologies, and applications An exploration of the intersection between the Internet of Things and Big Data, including IoT as a source of Big Data, the unique characteristics of IoT data, etc. A discussion of the IoT data analytics, including the data analytical requirements of IoT data and the types of IoT analytics, including predictive, descriptive, and prescriptive analytics A treatment of machine learning techniques for IoT data analytics Perfect for professionals, industry practitioners, and researchers engaged in big data analytics related to IoT systems, Big Data Analytics for Internet of Things will also earn a place in the libraries of IoT designers and manufacturers interested in facilitating the efficient implementation of data analytics strategies.