'Snake River (SR)-type' Volcanism at the Yellowstone Hotspot Track

'Snake River (SR)-type' Volcanism at the Yellowstone Hotspot Track
Title 'Snake River (SR)-type' Volcanism at the Yellowstone Hotspot Track PDF eBook
Author Michael J. Branney
Publisher
Pages 22
Release 2008
Genre Snake River Plain (Idaho and Or.)
ISBN

Download 'Snake River (SR)-type' Volcanism at the Yellowstone Hotspot Track Book in PDF, Epub and Kindle

A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) largevolume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarsegrained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing lowprofile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6?8), and involved H2O-poor, low-[delta] 18 O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900?1,050°C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coulées. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, EtendekaParaná, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia.

Track of the Yellowstone Hotspot

Track of the Yellowstone Hotspot
Title Track of the Yellowstone Hotspot PDF eBook
Author Lisa A. Morgan
Publisher
Pages 35
Release 2008
Genre Faulting
ISBN

Download Track of the Yellowstone Hotspot Book in PDF, Epub and Kindle

This field trip highlights various stages in the evolution of the Snake River Plain? Yellowstone Plateau bimodal volcanic province, and associated faulting and uplift, also known as the track of the Yellowstone hotspot. The 16 Ma Yellowstone hotspot track is one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Recent interest in young and possible renewed volcanism at Yellowstone along with new discoveries and synthesis of previous studies, i.e., tomographic, deformation, bathymetric, and seismic surveys, provide a framework of evidence of plate motion over a mantle plume. This 3-day trip is organized to present an overview into volcanism and tectonism in this dynamically active region. Field trip stops will include the young basaltic Craters of the Moon, exposures of 12?4 Ma rhyolites and edges of their associated collapsed calderas on the Snake River Plain, and exposures of faults which show an age progression similar to the volcanic fields. An essential stop is Yellowstone National Park, where the last major caldera-forming event occurred 640,000 years ago and now is host to the world?s largest concentration of hydrothermal features (>10,000 hot springs and geysers). This trip presents a quick, intensive overview into volcanism and tectonism in this dynamically active region. Field stops are directly linked to conceptual models related to hotspot passage through this volcano-tectonic province. Features that may reflect a tilted thermal mantle plume suggested in recent tomographic studies will be examined. The drive home will pass through Grand Teton National Park, where the Teton Range is currently rising in response to the passage of the North American plate over the Yellowstone hotspot.

The Track of the Yellowstone Hotspot

The Track of the Yellowstone Hotspot
Title The Track of the Yellowstone Hotspot PDF eBook
Author Lisa A. Morgan
Publisher
Pages 304
Release 2009
Genre Geology
ISBN

Download The Track of the Yellowstone Hotspot Book in PDF, Epub and Kindle

Drilling Into the Track of the Yellowstone Hot Spot

Drilling Into the Track of the Yellowstone Hot Spot
Title Drilling Into the Track of the Yellowstone Hot Spot PDF eBook
Author John W. Shervais
Publisher
Pages 2
Release 2014
Genre Volcanism
ISBN

Download Drilling Into the Track of the Yellowstone Hot Spot Book in PDF, Epub and Kindle

"The Yellowstone supervolcano erupted roughly 640,000 years ago, covering much of North America in a thick coat of ash. Material ejected from the volcano devastated the surrounding area, and particles injected into the atmosphere changed the Earth's climate. Over the past 18 million years the Yellowstone hot spot has powered a series of similar eruptions. In southern Idaho, the 640-kilometer-long Snake River Plain traces the path of the Yellowstone hot spot over this period." -- First paragraph.

Mid-Miocene Explosive Super-eruptions from the Yellowstone Hotspot Track

Mid-Miocene Explosive Super-eruptions from the Yellowstone Hotspot Track
Title Mid-Miocene Explosive Super-eruptions from the Yellowstone Hotspot Track PDF eBook
Author Thomas Ryan Knott
Publisher
Pages
Release 2014
Genre
ISBN

Download Mid-Miocene Explosive Super-eruptions from the Yellowstone Hotspot Track Book in PDF, Epub and Kindle

Snake River Plain Yellowstone Volcanic Province

Snake River Plain Yellowstone Volcanic Province
Title Snake River Plain Yellowstone Volcanic Province PDF eBook
Author Kerry L. Ruebelmann
Publisher American Geophysical Union
Pages 122
Release 1989
Genre Science
ISBN

Download Snake River Plain Yellowstone Volcanic Province Book in PDF, Epub and Kindle

Published by the American Geophysical Union as part of the Field Trip Guidebooks Series, Volume 305. This field trip was conceived as a way to introduce one of the major volcano-tectonic features of the North American continent to visiting scientists from abroad. Its objectives are to allow the participants to observe first hand the geologic relationships relevant to the formation of the Snake River Plain (SRP) and to discuss various interpretations of SRP genesis. The approach to these objectives is to travel the length of the plain from northeast to southwest and to examine in a logical manner, from younger to older volcanic rocks, the relationships important to an understanding of its origin and evolution (Fig. 1). Even though basaltic volcanism is commonly thought of in association with the SRP, this field trip will emphasize the importance of silicic volcanism because of its much greater volume and because of its profound effect on the upper crustal structure of the SRP.

Is the Track of the Yellowstone Hotspot Driven by a Deep Mantle Plume?

Is the Track of the Yellowstone Hotspot Driven by a Deep Mantle Plume?
Title Is the Track of the Yellowstone Hotspot Driven by a Deep Mantle Plume? PDF eBook
Author Kenneth Lee Pierce
Publisher
Pages 25
Release 2009
Genre Earth movements
ISBN

Download Is the Track of the Yellowstone Hotspot Driven by a Deep Mantle Plume? Book in PDF, Epub and Kindle

Geophysical imaging of a tilted mantle plume extending at least 500 km beneath the Yellowstone caldera provides compelling support for a plume origin of the entire Yellowstone hotspot track back to its inception at 17Mawith eruptions of flood basalts and rhyolite. The widespread volcanism, combined with a large volume of buoyant asthenosphere, supports a plume head as an initial phase. Estimates of the diameter of the plume head suggest it completely spanned the upper mantle and was fed from sources beneath the transition zone, We consider a mantle?plume depth to at least 1,000 km to best explain the large scale of features associated with the hotspot track. The Columbia River?Steens flood basalts form a northward-migrating succession consistent with the outward spreading of a plume head beneath the lithosphere. The northern part of the inferred plume head spread (pancaked) upward beneath Mesozoic oceanic crust to produce flood basalts, whereas basalt melt from the southern part intercepted and melted Paleozoic and older crust to produce rhyolite from 17 to 14 Ma. The plume head overlapped the craton margin as defined by strontium isotopes; westward motion of the North American plate has likely ?scraped off? the head from the plume tail. Flood basalt chemistries are explained by delamination of the lithosphere where the plume head intersected this cratonic margin. Before reaching the lithosphere, the rising plume head apparently intercepted the east-dipping Juan de Fuca slab and was deflected ~250 km to the west; the plume head eventually broke through the slab, leaving an abruptly truncated slab. Westward deflection of the plume head can explain the anomalously rapid hotspot movement of 62 km/m.y. from 17 to 10 Ma, compared to the rate of ~25 km/m.y. from 10 to 2 Ma. A plume head-to-tail transition occurred in the 14-to-10-Ma interval in the central Snake River Plain and was characterized by frequent (every 200?300 ka for about 2 m.y. from 12.7 to 10.5 Ma) ?large volume (N7000 km3)?, and high temperature rhyolitic eruptions (N1000 °C) along a ~200?km-wide east?west band. The broad transition area required a heat source of comparable area. Differing characteristics of the volcanic fields here may in part be due to variations in crustal composition but also may reflect development in differing parts of an evolving plume where the older fields may reflect the eruption from several volcanic centers located above very large and extensive rhyolitic magma chamber(s) over the detached plume head while the younger fields may signal the arrival of the plume tail intercepting and melting the lithosphere and generating a more focused rhyolitic magma chamber. The three youngest volcanic fields of the hotspot track started with large ignimbrite eruptions at 10.21, 6.62, and 2.05 Ma. They indicate hotspot migration N55° E at ~25 km/m.y. compatible in direction and velocity with the North American Plate motion. The Yellowstone Crescent of High Terrain (YCHT) flares outward ahead of the volcanic progression in a pattern similar to a bow-wave, and thus favors a sub-lithospheric driver. Estimates of YCHT-uplift rates are between 0.1 and 0.4mm/yr.Drainage divides havemigrated northeastwardwith the hotspot. The Continental Divide and a radial drainage pattern nowcenters on the hotspot. The largest geoid anomaly in the conterminous U.S. is also centered on Yellowstone and, consistent with uplift above a mantle plume. Bands of late Cenozoic faulting extend south and west from Yellowstone. These bands are subdivided into belts based both on recency of offset and range-front height. Fault history within these belts suggests the following pattern: Belt I ? starting activity but little accumulated offset; Belt II ? peak activity with high total offset and activity younger than 14 ka; Belt III?waning activitywith large offset and activity younger than 140 ka; and Belt IV ? apparently dead on substantial range fronts (south side of the eastern Snake River Plain only). These belts of fault activity have migrated northeast in tandem with the adjacent hotspot volcanism. On the southern arm of the YCHT, fault activity occurs on the inner, western slope consistent with driving by gravitational potential energy, whereas faulting has not started on the eastern, outer, more compressional slope. Range fronts increase in height and steepness northeastward along the southern-fault band. Both the belts of faulting and the YCHT are asymmetrical across the volcanic hotspot track, flaring out 1.6 times more on the south than the north side. This and the southeast tilt of the Yellowstone plumemay reflect southeast flow of the upper mantle.