Small Molecule Binding to Electrophilic Trigonal Pyramidal Platinum, Palladium, and Nickel

Small Molecule Binding to Electrophilic Trigonal Pyramidal Platinum, Palladium, and Nickel
Title Small Molecule Binding to Electrophilic Trigonal Pyramidal Platinum, Palladium, and Nickel PDF eBook
Author Charlene Tsay
Publisher
Pages 266
Release 2013
Genre
ISBN

Download Small Molecule Binding to Electrophilic Trigonal Pyramidal Platinum, Palladium, and Nickel Book in PDF, Epub and Kindle

Chapter 1 A general introduction to the concepts and background of several types of transition metal complexes that motivate and inform the research described herein. These include a-complexes and molecular adducts of dinitrogen, dihydrogen, and carbon dioxide. Chapter 2 Trigonal bipyramidal platinum(II) complexes of the monoanionic, tetradentate, triphosphine [SiPR3 ([SiP3R]- = [(2-R2PC6H4)3Si]-; R = Ph, iPr) ligand are prepared and shown to provide access to cationic species with divergent behavior. The less electron-rich phenyl-substituted ligand renders the platinum center extremely electrophilic, leading to structurally characterized examples of weakly-donating ligands bound in the fifth, apical coordination site. Of particular interest is the structure of the toluene adduct, which suggests a possible interaction between the platinum center and an aryl C-H bond. When the ligand phosphines are instead substituted by the more electron-rich isopropyl groups, the electrophilicity of the cationic platinum is shown to be mitigated, allowing access to a four-coordinate, trigonal pyramidal platinum center. The crystallographically characterized geometry for this divalent platinum is in contrast to the canonical square planar configuration for d8, 16-electron transition metal complexes. The palladium analogue is also synthesized and shown to possess the same coordination. Chapter 3 Cationic nickel complexes of the [SiPR3] ligand are synthesized and, in contrast to their platinum and palladium congeners, facilitate the surprising binding of molecular dinitrogen to electrophilic nickel(II) centers. The extremely high stretching frequencies of these bound N2 moieties attest to their minimal activation, and the stability of these complexes is shown to arise from increased adonation from the N2 to the cationic nickel center, which compensates for the relative lack of it back-bonding that stabilizes N2 adducts in less electrophilic systems. These cationic nickel species are additionally shown to form thermally stable adducts of molecular dihydrogen. The relative binding strengths of N2 and H2 to these nickel centers are explored and shown to be modulated by the ligand phosphine substituents. Furthermore, evidence of linear binding of carbon dioxide is presented, representing an electrophilic approach to carbon dioxide activation that is in contrast to the low-valent, nucleophilic metal paradigm. Chapter 4 The four-coordinate neutral nickel boratrane (TPiPrB = (2-iPr2PC6H4)3B) reported in the literature represents an isostructural counterpart to the cationic {[SiiPr3]Ni}+ species presented in Chapter 3. Though these two compounds are formally separated by two oxidation states of nickel, the Lewis-acidic nature of the Z-type borane ligand in (TP'PrB)Ni renders it valence-isoelectronic with {[SiiPr3]Ni}+. The reactivity toward N2 and H2 of (TPiPr'B)Ni, as well as that of the new compound (TPPhB)Ni, is explored and discussed in context of what is observed for the {[SiPR3]Ni}+ system. The neutral (TPiPr'B)Ni, while presumably a better [pi] back-bonder than cationic {I[SiPip' 3]Ni}T, is demonstrated not to bind N2, though a very weak, fluxional interaction with H2 at low temperature is hypothesized. The more electrophilic (TP PhB)Ni exhibits room temperature interactions with both N2 and H2, though the nature of these interactions has yet to be confirmed. These results thus underline the importance of [sigma]-donation in stabilizing N2 and H2 adducts of poorly 7r back-bonding metal centers. Chapter 5 Cobalt(I) complexes of [SiPR3] provide an additional isostructural, isoelectronic point of comparison to the cationic nickel species presented in Chapter 3. The dinitrogen adducts [SiP'i' 3]Co(N2) and [SiPPh3]Co(N2), previously reported from our laboratory, feature strongly bound N2 ligands that are not labile to vacuum. The corresponding dihydrogen adducts are generated slowly under an H2 atmosphere. The intact nature of both dihydrogen ligands, which also are not labile to vacuum, is reflected in their NMR spectroscopic parameters. The thermal stability of these compounds enabled crystallization of [SiPi'' 3]Co(H2) which, along with the related (TP'i'B)Co(H2) complex also developed in our laboratory, represent the first structurally characterized dihydrogen adducts of cobalt. Additional comparisons are made between the relative N2 and H2 binding strengths of this system and those of the structurally and electronically related family of [SiPR3] and (TpRB) metal complexes. Appendix A The asymmetric dinucleating ligand [NOPPh], designed to contain both a hard, N-donor binding site and a soft-P-donor binding site, is synthesized and shown to form a diiron complex that features asymmetric bonding to the bridging acetates. The corresponding symmetric, allphosphine dinucleating ligand [POPPh], proves to be more conducive to further study, and provides access to the symmetric diiron, di-([mu]-bromide) starting material {[POPPh ]Fe 2Br2} {BArF4 }. Addition of hydrazine generates the asymmetric, unbridged N2H4 adduct, which features localized diamagnetic and paramagnetic iron centers. The conformation of this species additionally demonstrates the flexibility of this ligand framework. Reduction of the diiron(II) starting material in the presence of PMe3 results in formation of a putative asymmetric iron(O)/iron(I) dimetallic complex, in which an N2 molecule is bound to the diamagnetic iron center, while the PMe3 is ligated to the high-spin iron center and rendered NMR silent. The N2 ligand is shown to be reversibly displaced by H2 , suggesting the formation of a dihydrogen adduct, as well as by CO2, which is postulated to bind as a bent, [eta]2(C,O) ligand.

The Organometallic Chemistry of the Transition Metals

The Organometallic Chemistry of the Transition Metals
Title The Organometallic Chemistry of the Transition Metals PDF eBook
Author Robert H. Crabtree
Publisher John Wiley & Sons
Pages 600
Release 2005-06-14
Genre Science
ISBN 0471718750

Download The Organometallic Chemistry of the Transition Metals Book in PDF, Epub and Kindle

Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.

Non-covalent Interactions in the Synthesis and Design of New Compounds

Non-covalent Interactions in the Synthesis and Design of New Compounds
Title Non-covalent Interactions in the Synthesis and Design of New Compounds PDF eBook
Author Abel M. Maharramov
Publisher John Wiley & Sons
Pages 481
Release 2016-05-03
Genre Science
ISBN 1119113857

Download Non-covalent Interactions in the Synthesis and Design of New Compounds Book in PDF, Epub and Kindle

This book aims to overview the role of non-covalent interactions, such as hydrogen and halogen bonding, π-π, π-anion and electrostatic interactions, hydrophobic effects and van der Waals forces in the synthesis of organic and inorganic compounds, as well as in design of new crystals and function materials. The proposed book should allow to combine, in a systematic way, recent advances on the application of non-covalent interactions in synthesis and design of new compounds and functional materials with significance in Inorganic, Organic, Coordination, Organometallic, Pharmaceutical, Biological and Material Chemistries. Therefore, it should present a multi- and interdisciplinary character assuring a rather broad scope. We believe it will be of interest to a wide range of academic and research staff concerning the synthesis of new compounds, catalysis and materials. Each chapter will be written by authors who are well known experts in their respective fields.

Fluorine

Fluorine
Title Fluorine PDF eBook
Author Alain Tressaud
Publisher Academic Press
Pages 274
Release 2018-10-06
Genre Science
ISBN 0128129913

Download Fluorine Book in PDF, Epub and Kindle

Fluorine: A Paradoxical Element, Volume Five, deals with the link between fluorine, humanity and the environment. It is divided into three main sections, including i) The history and developmental stages of fluorinated products, ii) Awareness of its importance in our environment, and iii) Recent contributions of fluoride products in medicine, pharmacy and our daily lives. Made engaging through interesting figures and accessible language, and written by a leading expert, Professor Tressaud, the book supports the work of scientists working in materials, toxicology and environmental science. It complements the author’s edited series, Progress in Fluorine Science, covering recent advances. Describes background and contextual information regarding the history, development of understanding, and applications of this important element Explores the impacts of fluorine, both positive and negative, in the environment and biological systems Includes applied, real-world information from agencies, such as CNRS, NASA, HWS and DOH

The Chemistry of Pincer Compounds

The Chemistry of Pincer Compounds
Title The Chemistry of Pincer Compounds PDF eBook
Author David Morales-Morales
Publisher Elsevier
Pages 467
Release 2011-08-11
Genre Science
ISBN 0080545157

Download The Chemistry of Pincer Compounds Book in PDF, Epub and Kindle

Pincer complexes are formed by the binding of a chemical structure to a metal atom with at least one carbon-metal bond. Usually the metal atom has three bonds to a chemical backbone, enclosing the atom like a pincer. The resulting structure protects the metal atom and gives it unique properties.The last decade has witnessed the continuous growth in the development of pincer complexes. These species have passed from being curiosity compounds to chemical chameleons able to perform a wide variety of applications. Their unique metal bound structures provide some of the most active catalysts yet known for organic transformations involving the activation of bonds. The Chemistry of Pincer Compounds details use of pincer compounds including homogeneous catalysis, enantioselective organic transformations, the activation of strong bonds, the biological importance of pincer compounds as potential therapeutic or pharmaceutical agents, dendrimeric and supported materials. * Describes the chemistry and applications of this important class of organometallic and coordination compounds* Covers the areas in which pincer complexes have had an impact* Includes information on more recent and interesting pincer compounds not just those that are well-known

Organometallic Pincer Chemistry

Organometallic Pincer Chemistry
Title Organometallic Pincer Chemistry PDF eBook
Author Gerard van Koten
Publisher Springer
Pages 363
Release 2012-09-17
Genre Science
ISBN 3642310818

Download Organometallic Pincer Chemistry Book in PDF, Epub and Kindle

Gerard van Koten: The Mono-anionic ECE-Pincer Ligand - a Versatile Privileged Ligand Platform: General Considerations.- Elena Poverenov, David Milstein: Non-Innocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes.- Dean M. Roddick: Tuning of PCP Pincer Ligand Electronic and Steric Properties.- Gemma R. Freeman, J. A. Gareth Williams: Metal Complexes of Pincer Ligands: Excited States, Photochemistry, and Luminescence.- Davit Zargarian, Annie Castonguay, Denis M. Spasyuk: ECE-Type Pincer Complexes of Nickel.- Roman Jambor and Libor Dostál: The Chemistry of Pincer Complexes of 13 - 15 Main Group Elements.- Kálmán J. Szabo: Pincer Complexes as Catalysts in Organic Chemistry.- Jun-ichi Ito and Hisao Nishiyama: Optically Active Bis(oxazolinyl)phenyl Metal Complexes as Multi-potent Catalysts.- Anthony St. John, Karen I. Goldberg, and D. Michael Heinekey: Pincer Complexes as Catalysts for Amine Borane Dehydrogenation.- Dmitri Gelman and Ronit Romm: PC(sp3)P Transition Metal Pincer Complexes: Properties and Catalytic Applications.- Jennifer Hawk and Steve Craig: Physical Applications of Pincer Complexes.

Olefin Polymerization

Olefin Polymerization
Title Olefin Polymerization PDF eBook
Author Walter Kaminsky
Publisher Wiley-VCH
Pages 0
Release 2006-08-18
Genre Technology & Engineering
ISBN 9783527317424

Download Olefin Polymerization Book in PDF, Epub and Kindle

With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.