Six Lectures on Dynamical Systems

Six Lectures on Dynamical Systems
Title Six Lectures on Dynamical Systems PDF eBook
Author Bernd Aulbach
Publisher World Scientific
Pages 332
Release 1996
Genre Mathematics
ISBN 9789810225483

Download Six Lectures on Dynamical Systems Book in PDF, Epub and Kindle

This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.

Nonautonomous Dynamical Systems

Nonautonomous Dynamical Systems
Title Nonautonomous Dynamical Systems PDF eBook
Author Peter E. Kloeden
Publisher American Mathematical Soc.
Pages 274
Release 2011-08-17
Genre Mathematics
ISBN 0821868713

Download Nonautonomous Dynamical Systems Book in PDF, Epub and Kindle

The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

Nonautonomous Dynamical Systems in the Life Sciences

Nonautonomous Dynamical Systems in the Life Sciences
Title Nonautonomous Dynamical Systems in the Life Sciences PDF eBook
Author Peter E. Kloeden
Publisher Springer
Pages 326
Release 2014-01-22
Genre Mathematics
ISBN 3319030809

Download Nonautonomous Dynamical Systems in the Life Sciences Book in PDF, Epub and Kindle

Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

Shadowing in Dynamical Systems

Shadowing in Dynamical Systems
Title Shadowing in Dynamical Systems PDF eBook
Author K.J. Palmer
Publisher Springer Science & Business Media
Pages 307
Release 2013-03-14
Genre Mathematics
ISBN 1475732104

Download Shadowing in Dynamical Systems Book in PDF, Epub and Kindle

In this book the theory of hyperbolic sets is developed, both for diffeomorphisms and flows, with an emphasis on shadowing. We show that hyperbolic sets are expansive and have the shadowing property. Then we use shadowing to prove that hyperbolic sets are robust under perturbation, that they have an asymptotic phase property and also that the dynamics near a transversal homoclinic orbit is chaotic. It turns out that chaotic dynamical systems arising in practice are not quite hyperbolic. However, they possess enough hyperbolicity to enable us to use shadowing ideas to give computer-assisted proofs that computed orbits of such systems can be shadowed by true orbits for long periods of time, that they possess periodic orbits of long periods and that it is really true that they are chaotic. Audience: This book is intended primarily for research workers in dynamical systems but could also be used in an advanced graduate course taken by students familiar with calculus in Banach spaces and with the basic existence theory for ordinary differential equations.

Random Dynamical Systems

Random Dynamical Systems
Title Random Dynamical Systems PDF eBook
Author Ludwig Arnold
Publisher Springer Science & Business Media
Pages 590
Release 2013-04-17
Genre Mathematics
ISBN 3662128780

Download Random Dynamical Systems Book in PDF, Epub and Kindle

The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.

Dynamical Systems, Graphs, and Algorithms

Dynamical Systems, Graphs, and Algorithms
Title Dynamical Systems, Graphs, and Algorithms PDF eBook
Author George Osipenko
Publisher Springer
Pages 286
Release 2006-10-28
Genre Mathematics
ISBN 3540355952

Download Dynamical Systems, Graphs, and Algorithms Book in PDF, Epub and Kindle

This book describes a family of algorithms for studying the global structure of systems. By a finite covering of the phase space we construct a directed graph with vertices corresponding to cells of the covering and edges corresponding to admissible transitions. The method is used, among other things, to locate the periodic orbits and the chain recurrent set, to construct the attractors and their basins, to estimate the entropy, and more.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos
Title Introduction to Applied Nonlinear Dynamical Systems and Chaos PDF eBook
Author Stephen Wiggins
Publisher Springer Science & Business Media
Pages 860
Release 2006-04-18
Genre Mathematics
ISBN 0387217495

Download Introduction to Applied Nonlinear Dynamical Systems and Chaos Book in PDF, Epub and Kindle

This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik