Singularity Theory for Non-Twist KAM Tori

Singularity Theory for Non-Twist KAM Tori
Title Singularity Theory for Non-Twist KAM Tori PDF eBook
Author A. González-Enríquez
Publisher American Mathematical Soc.
Pages 128
Release 2014-01-08
Genre Mathematics
ISBN 0821890182

Download Singularity Theory for Non-Twist KAM Tori Book in PDF, Epub and Kindle

In this monograph the authors introduce a new method to study bifurcations of KAM tori with fixed Diophantine frequency in parameter-dependent Hamiltonian systems. It is based on Singularity Theory of critical points of a real-valued function which the authors call the potential. The potential is constructed in such a way that: nondegenerate critical points of the potential correspond to twist invariant tori (i.e. with nondegenerate torsion) and degenerate critical points of the potential correspond to non-twist invariant tori. Hence, bifurcating points correspond to non-twist tori.

The Parameterization Method for Invariant Manifolds

The Parameterization Method for Invariant Manifolds
Title The Parameterization Method for Invariant Manifolds PDF eBook
Author Àlex Haro
Publisher Springer
Pages 280
Release 2016-04-18
Genre Mathematics
ISBN 3319296620

Download The Parameterization Method for Invariant Manifolds Book in PDF, Epub and Kindle

This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.

Operator-Valued Measures, Dilations, and the Theory of Frames

Operator-Valued Measures, Dilations, and the Theory of Frames
Title Operator-Valued Measures, Dilations, and the Theory of Frames PDF eBook
Author Deguang Han
Publisher American Mathematical Soc.
Pages 98
Release 2014-04-07
Genre Mathematics
ISBN 0821891723

Download Operator-Valued Measures, Dilations, and the Theory of Frames Book in PDF, Epub and Kindle

The authors develop elements of a general dilation theory for operator-valued measures. Hilbert space operator-valued measures are closely related to bounded linear maps on abelian von Neumann algebras, and some of their results include new dilation results for bounded linear maps that are not necessarily completely bounded, and from domain algebras that are not necessarily abelian. In the non-cb case the dilation space often needs to be a Banach space. They give applications to both the discrete and the continuous frame theory. There are natural associations between the theory of frames (including continuous frames and framings), the theory of operator-valued measures on sigma-algebras of sets, and the theory of continuous linear maps between -algebras. In this connection frame theory itself is identified with the special case in which the domain algebra for the maps is an abelian von Neumann algebra and the map is normal (i.e. ultraweakly, or weakly, or w*) continuous.

A Homology Theory for Smale Spaces

A Homology Theory for Smale Spaces
Title A Homology Theory for Smale Spaces PDF eBook
Author Ian F. Putnam
Publisher American Mathematical Soc.
Pages 136
Release 2014-09-29
Genre Mathematics
ISBN 1470409097

Download A Homology Theory for Smale Spaces Book in PDF, Epub and Kindle

The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.

Index Theory for Locally Compact Noncommutative Geometries

Index Theory for Locally Compact Noncommutative Geometries
Title Index Theory for Locally Compact Noncommutative Geometries PDF eBook
Author A. L. Carey
Publisher American Mathematical Soc.
Pages 142
Release 2014-08-12
Genre Mathematics
ISBN 0821898388

Download Index Theory for Locally Compact Noncommutative Geometries Book in PDF, Epub and Kindle

Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.

Automorphisms of Manifolds and Algebraic $K$-Theory: Part III

Automorphisms of Manifolds and Algebraic $K$-Theory: Part III
Title Automorphisms of Manifolds and Algebraic $K$-Theory: Part III PDF eBook
Author Michael S. Weiss
Publisher American Mathematical Soc.
Pages 122
Release 2014-08-12
Genre Mathematics
ISBN 147040981X

Download Automorphisms of Manifolds and Algebraic $K$-Theory: Part III Book in PDF, Epub and Kindle

The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.

Generalized Descriptive Set Theory and Classification Theory

Generalized Descriptive Set Theory and Classification Theory
Title Generalized Descriptive Set Theory and Classification Theory PDF eBook
Author Sy-David Friedman
Publisher American Mathematical Soc.
Pages 92
Release 2014-06-05
Genre Mathematics
ISBN 0821894757

Download Generalized Descriptive Set Theory and Classification Theory Book in PDF, Epub and Kindle

Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.