Singularities of Differentiable Maps, Volume 2
Title | Singularities of Differentiable Maps, Volume 2 PDF eBook |
Author | Elionora Arnold |
Publisher | Springer Science & Business Media |
Pages | 500 |
Release | 2012-05-16 |
Genre | Mathematics |
ISBN | 0817683437 |
The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.
Singularities of Differentiable Maps
Title | Singularities of Differentiable Maps PDF eBook |
Author | V.I. Arnold |
Publisher | Springer Science & Business Media |
Pages | 390 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461251540 |
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Singularities of Differentiable Maps, Volume 1
Title | Singularities of Differentiable Maps, Volume 1 PDF eBook |
Author | V.I. Arnold |
Publisher | Springer Science & Business Media |
Pages | 393 |
Release | 2012-05-24 |
Genre | Mathematics |
ISBN | 0817683402 |
Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory: monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. The first volume has been adapted for the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level. With this foundation, the book's sophisticated development permits readers to explore more applications than previous books on singularities.
Singularities of Differentiable Maps, Volume 2
Title | Singularities of Differentiable Maps, Volume 2 PDF eBook |
Author | Elionora Arnold |
Publisher | Birkhäuser |
Pages | 492 |
Release | 2012-05-17 |
Genre | Mathematics |
ISBN | 9780817683429 |
The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.
Partial Differential Equations II
Title | Partial Differential Equations II PDF eBook |
Author | Yu.V. Egorov |
Publisher | Springer Science & Business Media |
Pages | 269 |
Release | 2013-12-01 |
Genre | Mathematics |
ISBN | 3642578764 |
This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics.
Topology of Singular Fibers of Differentiable Maps
Title | Topology of Singular Fibers of Differentiable Maps PDF eBook |
Author | Osamu Saeki |
Publisher | Springer |
Pages | 146 |
Release | 2004-08-30 |
Genre | Mathematics |
ISBN | 3540446486 |
The volume develops a thorough theory of singular fibers of generic differentiable maps. This is the first work that establishes the foundational framework of the global study of singular differentiable maps of negative codimension from the viewpoint of differential topology. The book contains not only a general theory, but also some explicit examples together with a number of very concrete applications. This is a very interesting subject in differential topology, since it shows a beautiful interplay between the usual theory of singularities of differentiable maps and the geometric topology of manifolds.
Fewnomials
Title | Fewnomials PDF eBook |
Author | A. G. Khovanskiĭ |
Publisher | American Mathematical Soc. |
Pages | 154 |
Release | 1991 |
Genre | Mathematics |
ISBN | 9780821898307 |
The ideology of the theory of fewnomials is the following: real varieties defined by "simple", not cumbersome, systems of equations should have a "simple" topology. One of the results of the theory is a real transcendental analogue of the Bezout theorem: for a large class of systems of *k transcendental equations in *k real variables, the number of roots is finite and can be explicitly estimated from above via the "complexity" of the system. A more general result is the construction of a category of real transcendental manifolds that resemble algebraic varieties in their properties. These results give new information on level sets of elementary functions and even on algebraic equations. The topology of geometric objects given via algebraic equations (real-algebraic curves, surfaces, singularities, etc.) quickly becomes more complicated as the degree of the equations increases. It turns out that the complexity of the topology depends not on the degree of the equations but only on the number of monomials appearing in them. This book provides a number of theorems estimating the complexity of the topology of geometric objects via the cumbersomeness of the defining equations. In addition, the author presents a version of the theory of fewnomials based on the model of a dynamical system in the plane. Pfaff equations and Pfaff manifolds are also studied.