Singularities in PDE and the Calculus of Variations

Singularities in PDE and the Calculus of Variations
Title Singularities in PDE and the Calculus of Variations PDF eBook
Author Stanley Alama
Publisher American Mathematical Soc.
Pages 284
Release
Genre Mathematics
ISBN 9780821873311

Download Singularities in PDE and the Calculus of Variations Book in PDF, Epub and Kindle

This book contains papers presented at the "Workshop on Singularities in PDE and the Calculus of Variations" at the CRM in July 2006. The main theme of the meeting was the formation of geometrical singularities in PDE problems with a variational formulation. These equations typically arise in some applications (to physics, engineering, or biology, for example) and their resolution often requires a combination of methods coming from areas such as functional and harmonic analysis, differential geometry and geometric measure theory. Among the PDE problems discussed were: the Cahn-Hilliard model of phase transitions and domain walls; vortices in Ginzburg-Landau type models for superconductivity and superfluidity; the Ohna-Kawasaki model for di-block copolymers; models of image enhancement; and Monge-Ampere functions. The articles give a sampling of problems and methods in this diverse area of mathematics, which touches a large part of modern mathematics and its applications.

Singularities in PDE and the Calculus of Variations

Singularities in PDE and the Calculus of Variations
Title Singularities in PDE and the Calculus of Variations PDF eBook
Author
Publisher
Pages 267
Release 2008
Genre Calculus of variations
ISBN 9781470439583

Download Singularities in PDE and the Calculus of Variations Book in PDF, Epub and Kindle

This book contains papers presented at the ""Workshop on Singularities in PDE and the Calculus of Variations"" at the CRM in July 2006. The main theme of the meeting was the formation of geometrical singularities in PDE problems with a variational formulation. These equations typically arise in some applications (to physics, engineering, or biology, for example) and their resolution often requires a combination of methods coming from areas such as functional and harmonic analysis, differential geometry and geometric measure theory. Among the PDE problems discussed were: the Cahn-Hilliard model.

Calculus of Variations

Calculus of Variations
Title Calculus of Variations PDF eBook
Author Filip Rindler
Publisher Springer
Pages 446
Release 2018-06-20
Genre Mathematics
ISBN 3319776371

Download Calculus of Variations Book in PDF, Epub and Kindle

This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.

Contemporary Research in Elliptic PDEs and Related Topics

Contemporary Research in Elliptic PDEs and Related Topics
Title Contemporary Research in Elliptic PDEs and Related Topics PDF eBook
Author Serena Dipierro
Publisher Springer
Pages 502
Release 2019-07-12
Genre Mathematics
ISBN 303018921X

Download Contemporary Research in Elliptic PDEs and Related Topics Book in PDF, Epub and Kindle

This volume collects contributions from the speakers at an INdAM Intensive period held at the University of Bari in 2017. The contributions cover several aspects of partial differential equations whose development in recent years has experienced major breakthroughs in terms of both theory and applications. The topics covered include nonlocal equations, elliptic equations and systems, fully nonlinear equations, nonlinear parabolic equations, overdetermined boundary value problems, maximum principles, geometric analysis, control theory, mean field games, and bio-mathematics. The authors are trailblazers in these topics and present their work in a way that is exhaustive and clearly accessible to PhD students and early career researcher. As such, the book offers an excellent introduction to a variety of fundamental topics of contemporary investigation and inspires novel and high-quality research.

Partial Differential Equations

Partial Differential Equations
Title Partial Differential Equations PDF eBook
Author Walter A. Strauss
Publisher John Wiley & Sons
Pages 467
Release 2007-12-21
Genre Mathematics
ISBN 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Theorems on Regularity and Singularity of Energy Minimizing Maps

Theorems on Regularity and Singularity of Energy Minimizing Maps
Title Theorems on Regularity and Singularity of Energy Minimizing Maps PDF eBook
Author Leon Simon
Publisher Birkhäuser
Pages 160
Release 2012-12-06
Genre Mathematics
ISBN 3034891938

Download Theorems on Regularity and Singularity of Energy Minimizing Maps Book in PDF, Epub and Kindle

The aim of these lecture notes is to give an essentially self-contained introduction to the basic regularity theory for energy minimizing maps, including recent developments concerning the structure of the singular set and asymptotics on approach to the singular set. Specialized knowledge in partial differential equations or the geometric calculus of variations is not required; a good general background in mathematical analysis would be adequate preparation.

Vector-Valued Partial Differential Equations and Applications

Vector-Valued Partial Differential Equations and Applications
Title Vector-Valued Partial Differential Equations and Applications PDF eBook
Author Bernard Dacorogna
Publisher Springer
Pages 256
Release 2017-05-29
Genre Mathematics
ISBN 3319545140

Download Vector-Valued Partial Differential Equations and Applications Book in PDF, Epub and Kindle

Collating different aspects of Vector-valued Partial Differential Equations and Applications, this volume is based on the 2013 CIME Course with the same name which took place at Cetraro, Italy, under the scientific direction of John Ball and Paolo Marcellini. It contains the following contributions: The pullback equation (Bernard Dacorogna), The stability of the isoperimetric inequality (Nicola Fusco), Mathematical problems in thin elastic sheets: scaling limits, packing, crumpling and singularities (Stefan Müller), and Aspects of PDEs related to fluid flows (Vladimir Sverák). These lectures are addressed to graduate students and researchers in the field.