Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30

Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30
Title Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30 PDF eBook
Author Elias M. Stein
Publisher Princeton University Press
Pages 306
Release 2016-06-02
Genre Mathematics
ISBN 1400883881

Download Singular Integrals and Differentiability Properties of Functions (PMS-30), Volume 30 Book in PDF, Epub and Kindle

Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.

Singular Integral Operators

Singular Integral Operators
Title Singular Integral Operators PDF eBook
Author Solomon G. Mikhlin
Publisher Springer Science & Business Media
Pages 530
Release 1987
Genre Mathematics
ISBN 9783540159674

Download Singular Integral Operators Book in PDF, Epub and Kindle

The present edition differs from the original German one mainly in the following addi tional material: weighted norm inequalities for maximal functions and singular opera tors (§ 12, Chap. XI), polysingular integral operators and pseudo-differential operators (§§ 7, 8, Chap. XII), and spline approximation methods for solving singular integral equations (§ 4, Chap. XVII). Furthermore, we added two subsections on polynomial approximation methods for singular integral equations over an interval or with dis continuous coefficients (Nos. 3.6 and 3.7, Chap. XVII). In many places we incorporated new results which, in the vast majority, are from the last five years after publishing the German edition (note that the references are enlarged by about 150 new titles). S. G. Mikhlin wrote §§ 7, 8, Chap. XII, and the other additions were drawn up by S. Prossdorf. We wish to express our deepest gratitude to Dr. A. Bottcher and Dr. R. Lehmann who together translated the text into English carefully and with remarkable expertise.

Singularities of integrals

Singularities of integrals
Title Singularities of integrals PDF eBook
Author Frédéric Pham
Publisher Springer Science & Business Media
Pages 218
Release 2011-04-22
Genre Mathematics
ISBN 0857296035

Download Singularities of integrals Book in PDF, Epub and Kindle

Bringing together two fundamental texts from Frédéric Pham’s research on singular integrals, the first part of this book focuses on topological and geometrical aspects while the second explains the analytic approach. Using notions developed by J. Leray in the calculus of residues in several variables and R. Thom’s isotopy theorems, Frédéric Pham’s foundational study of the singularities of integrals lies at the interface between analysis and algebraic geometry, culminating in the Picard-Lefschetz formulae. These mathematical structures, enriched by the work of Nilsson, are then approached using methods from the theory of differential equations and generalized from the point of view of hyperfunction theory and microlocal analysis. Providing a ‘must-have’ introduction to the singularities of integrals, a number of supplementary references also offer a convenient guide to the subjects covered. This book will appeal to both mathematicians and physicists with an interest in the area of singularities of integrals. Frédéric Pham, now retired, was Professor at the University of Nice. He has published several educational and research texts. His recent work concerns semi-classical analysis and resurgent functions.

Singular Integral Equations

Singular Integral Equations
Title Singular Integral Equations PDF eBook
Author N. I. Muskhelishvili
Publisher Courier Corporation
Pages 466
Release 2013-02-19
Genre Mathematics
ISBN 0486145069

Download Singular Integral Equations Book in PDF, Epub and Kindle

DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div

Singular Integrals and Related Topics

Singular Integrals and Related Topics
Title Singular Integrals and Related Topics PDF eBook
Author Shanzhen Lu
Publisher World Scientific
Pages 281
Release 2007
Genre Mathematics
ISBN 9812770569

Download Singular Integrals and Related Topics Book in PDF, Epub and Kindle

This book introduces some important progress in the theory of CalderonOCoZygmund singular integrals, oscillatory singular integrals, and LittlewoodOCoPaley theory over the last decade. It includes some important research results by the authors and their cooperators, such as singular integrals with rough kernels on Block spaces and Hardy spaces, the criterion on boundedness of oscillatory singular integrals, and boundedness of the rough Marcinkiewicz integrals. These results have frequently been cited in many published papers."

Multidimensional Singular Integrals and Integral Equations

Multidimensional Singular Integrals and Integral Equations
Title Multidimensional Singular Integrals and Integral Equations PDF eBook
Author S. G. Mikhlin
Publisher Elsevier
Pages 273
Release 2014-07-10
Genre Mathematics
ISBN 1483164497

Download Multidimensional Singular Integrals and Integral Equations Book in PDF, Epub and Kindle

Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals; properties of the symbol, with particular reference to Fourier transform of a kernel and the symbol of a singular operator; singular integrals in Lp spaces; and singular integral equations. The differentiation of integrals with a weak singularity is also considered, along with the rule for the multiplication of the symbols in the general case. The final chapter describes several applications of multidimensional singular integral equations to boundary problems in mathematical physics. This book will be of interest to mathematicians and students of mathematics.

Wavelets and Singular Integrals on Curves and Surfaces

Wavelets and Singular Integrals on Curves and Surfaces
Title Wavelets and Singular Integrals on Curves and Surfaces PDF eBook
Author Guy David
Publisher Springer
Pages 119
Release 2006-11-14
Genre Mathematics
ISBN 3540463771

Download Wavelets and Singular Integrals on Curves and Surfaces Book in PDF, Epub and Kindle

Wavelets are a recently developed tool for the analysis and synthesis of functions; their simplicity, versatility and precision makes them valuable in many branches of applied mathematics. The book begins with an introduction to the theory of wavelets and limits itself to the detailed construction of various orthonormal bases of wavelets. A second part centers on a criterion for the L2-boundedness of singular integral operators: the T(b)-theorem. It contains a full proof of that theorem. It contains a full proof of that theorem, and a few of the most striking applications (mostly to the Cauchy integral). The third part is a survey of recent attempts to understand the geometry of subsets of Rn on which analogues of the Cauchy kernel define bounded operators. The book was conceived for a graduate student, or researcher, with a primary interest in analysis (and preferably some knowledge of harmonic analysis and seeking an understanding of some of the new "real-variable methods" used in harmonic analysis.