Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications
Title | Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications PDF eBook |
Author | Eric Bayerschen |
Publisher | KIT Scientific Publishing |
Pages | 278 |
Release | 2016 |
Genre | Technology (General) |
ISBN | 3731506068 |
In experiments on metallic microwires, size effects occur as a result of the interaction of dislocations with, e.g., grain boundaries. In continuum theories this behavior can be approximated using gradient plasticity. A numerically efficient geometrically linear gradient plasticity theory is developed considering the grain boundaries and implemented with finite elements. Simulations are performed for several metals in comparison to experiments and discrete dislocation dynamics simulations.
Crystal Plasticity Finite Element Methods
Title | Crystal Plasticity Finite Element Methods PDF eBook |
Author | Franz Roters |
Publisher | John Wiley & Sons |
Pages | 188 |
Release | 2011-08-04 |
Genre | Technology & Engineering |
ISBN | 3527642099 |
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.
Single-crystal Gradient Plasticity With an Accumulated Plastic Slip
Title | Single-crystal Gradient Plasticity With an Accumulated Plastic Slip PDF eBook |
Author | Eric Bayerschen |
Publisher | |
Pages | 270 |
Release | 2020-10-09 |
Genre | Technology & Engineering |
ISBN | 9781013283444 |
In experiments on metallic microwires, size effects occur as a result of the interaction of dislocations with, e.g., grain boundaries. In continuum theories this behavior can be approximated using gradient plasticity. A numerically efficient geometrically linear gradient plasticity theory is developed considering the grain boundaries and implemented with finite elements. Simulations are performed for several metals in comparison to experiments and discrete dislocation dynamics simulations. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
Modeling of Dislocation - Grain Boundary Interactions in Gradient Crystal Plasticity Theories
Title | Modeling of Dislocation - Grain Boundary Interactions in Gradient Crystal Plasticity Theories PDF eBook |
Author | Erdle, Hannes |
Publisher | KIT Scientific Publishing |
Pages | 184 |
Release | 2022-07-12 |
Genre | Technology & Engineering |
ISBN | 3731511967 |
A physically-based dislocation theory of plasticity is derived within an extended continuum mechanical context. Thermodynamically consistent flow rules at the grain boundaries are derived. With an analytical solution of a three-phase periodic laminate, dislocation pile-up at grain boundaries and dislocation transmission through the grain boundaries are investigated. For the finite element implementations, numerically efficient approaches are introduced based on accumulated field variables.
A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance
Title | A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance PDF eBook |
Author | Prahs, Andreas |
Publisher | KIT Scientific Publishing |
Pages | 182 |
Release | 2020-09-15 |
Genre | Technology & Engineering |
ISBN | 3731510251 |
An overview of different methods for the derivation of extended continuum models is given. A gradient plasticity theory is established in the context of small deformations and single slip by considering the invariance of an extended energy balance with respect to Euclidean transformations, where the plastic slip is considered as an additional degree of freedom. Thermodynamically consistent flow rules at the grain boundary are derived. The theory is applied to a two- and a three-phase laminate.
Dislocation Mechanism-Based Crystal Plasticity
Title | Dislocation Mechanism-Based Crystal Plasticity PDF eBook |
Author | Zhuo Zhuang |
Publisher | Academic Press |
Pages | 452 |
Release | 2019-04-12 |
Genre | Technology & Engineering |
ISBN | 0128145927 |
Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. - Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale - Presents crystal plasticity theory without size effect - Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) - Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale
Introduction to Texture Analysis
Title | Introduction to Texture Analysis PDF eBook |
Author | Olaf Engler |
Publisher | CRC Press |
Pages | 490 |
Release | 2009-11-16 |
Genre | Science |
ISBN | 1420063669 |
The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra