Simplicial Methods for Operads and Algebraic Geometry
Title | Simplicial Methods for Operads and Algebraic Geometry PDF eBook |
Author | Ieke Moerdijk |
Publisher | Springer Science & Business Media |
Pages | 186 |
Release | 2010-12-01 |
Genre | Mathematics |
ISBN | 3034800525 |
"This book is an introduction to two higher-categorical topics in algebraic topology and algebraic geometry relying on simplicial methods. It is based on lectures delivered at the Centre de Recerca Matemàtica in February 2008, as part of a special year on Homotopy Theory and Higher Categories"--Foreword
Simplicial and Operad Methods in Algebraic Topology
Title | Simplicial and Operad Methods in Algebraic Topology PDF eBook |
Author | Vladimir Alekseevich Smirnov |
Publisher | American Mathematical Soc. |
Pages | 235 |
Release | 2001 |
Genre | Mathematics |
ISBN | 9780821821701 |
In recent years, for solving problems of algebraic topology and, in particular, difficult problems of homotopy theory, algebraic structures more complicated than just a topological monoid, an algebra, a coalgebra, etc., have been used more and more often. A convenient language for describing various structures arising naturally on topological spaces and on their cohomology and homotopy groups is the language of operads and algebras over an operad. This language was proposed by J. P. May in the 1970s to describe the structures on various loop spaces. This book presents a detailed study of the concept of an operad in the categories of topological spaces and of chain complexes. The notions of an algebra and a coalgebra over an operad are introduced, and their properties are investigated. The algebraic structure of the singular chain complex of a topological space is explained, and it is shown how the problem of homotopy classification of topological spaces can be solved using this structure. For algebras and coalgebras over operads, standard constructions are defined, particularly the bar and cobar constructions. Operad methods are applied to computing the homology of iterated loop spaces, investigating the algebraic structure of generalized cohomology theories, describing cohomology of groups and algebras, computing differential in the Adams spectral sequence for the homotopy groups of the spheres, and some other problems.
Operads in Algebra, Topology and Physics
Title | Operads in Algebra, Topology and Physics PDF eBook |
Author | Martin Markl |
Publisher | American Mathematical Soc. |
Pages | 362 |
Release | 2002 |
Genre | Mathematics |
ISBN | 0821843621 |
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. From their beginnings in the 1960s, they have developed to encompass such areas as combinatorics, knot theory, moduli spaces, string field theory and deformation quantization.
Algebraic Operads
Title | Algebraic Operads PDF eBook |
Author | Jean-Louis Loday |
Publisher | Springer Science & Business Media |
Pages | 649 |
Release | 2012-08-08 |
Genre | Mathematics |
ISBN | 3642303625 |
In many areas of mathematics some “higher operations” are arising. These havebecome so important that several research projects refer to such expressions. Higher operationsform new types of algebras. The key to understanding and comparing them, to creating invariants of their action is operad theory. This is a point of view that is 40 years old in algebraic topology, but the new trend is its appearance in several other areas, such as algebraic geometry, mathematical physics, differential geometry, and combinatorics. The present volume is the first comprehensive and systematic approach to algebraic operads. An operad is an algebraic device that serves to study all kinds of algebras (associative, commutative, Lie, Poisson, A-infinity, etc.) from a conceptual point of view. The book presents this topic with an emphasis on Koszul duality theory. After a modern treatment of Koszul duality for associative algebras, the theory is extended to operads. Applications to homotopy algebra are given, for instance the Homotopy Transfer Theorem. Although the necessary notions of algebra are recalled, readers are expected to be familiar with elementary homological algebra. Each chapter ends with a helpful summary and exercises. A full chapter is devoted to examples, and numerous figures are included. After a low-level chapter on Algebra, accessible to (advanced) undergraduate students, the level increases gradually through the book. However, the authors have done their best to make it suitable for graduate students: three appendices review the basic results needed in order to understand the various chapters. Since higher algebra is becoming essential in several research areas like deformation theory, algebraic geometry, representation theory, differential geometry, algebraic combinatorics, and mathematical physics, the book can also be used as a reference work by researchers.
Homotopy of Operads and Grothendieck-Teichmuller Groups
Title | Homotopy of Operads and Grothendieck-Teichmuller Groups PDF eBook |
Author | Benoit Fresse |
Publisher | American Mathematical Soc. |
Pages | 581 |
Release | 2017-04-21 |
Genre | Mathematics |
ISBN | 1470434814 |
The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.
Homotopy Methods in Algebraic Topology
Title | Homotopy Methods in Algebraic Topology PDF eBook |
Author | Nicholas Kuhn |
Publisher | American Mathematical Soc. |
Pages | 370 |
Release | 2001-04-25 |
Genre | Mathematics |
ISBN | 0821826212 |
This volume presents the proceedings from the AMS-IMS-SIAM Summer Research Conference on Homotopy Methods in Algebraic Topology held at the University of Colorado (Boulder). The conference coincided with the sixtieth birthday of J. Peter May. An article is included reflecting his wide-ranging and influential contributions to the subject area. Other articles in the book discuss the ordinary, elliptic and real-oriented Adams spectral sequences, mapping class groups, configuration spaces, extended powers, operads, the telescope conjecture, $p$-compact groups, algebraic K theory, stable and unstable splittings, the calculus of functors, the $E_{\infty}$ tensor product, and equivariant cohomology theories. The book offers a compendious source on modern aspects of homotopy theoretic methods in many algebraic settings.
On Operads, Bimodules and Analytic Functors
Title | On Operads, Bimodules and Analytic Functors PDF eBook |
Author | Nicola Gambino |
Publisher | American Mathematical Soc. |
Pages | 122 |
Release | 2017-09-25 |
Genre | Mathematics |
ISBN | 1470425769 |
The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory of operad bimodules, that has operads as -cells, operad bimodules as -cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads.