Silicon Devices and Process Integration

Silicon Devices and Process Integration
Title Silicon Devices and Process Integration PDF eBook
Author Badih El-Kareh
Publisher Springer Science & Business Media
Pages 614
Release 2009-01-09
Genre Technology & Engineering
ISBN 0387690107

Download Silicon Devices and Process Integration Book in PDF, Epub and Kindle

Silicon Devices and Process Integration covers state-of-the-art silicon devices, their characteristics, and their interactions with process parameters. It serves as a comprehensive guide which addresses both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. The book is compiled from the author’s industrial and academic lecture notes and reflects years of experience in the development of silicon devices. Features include: A review of silicon properties which provides a foundation for understanding the device properties discussion, including mobility-enhancement by straining silicon; State-of-the-art technologies on high-K gate dielectrics, low-K dielectrics, Cu interconnects, and SiGe BiCMOS; CMOS-only applications, such as subthreshold current and parasitic latch-up; Advanced Enabling processes and process integration. This book is written for engineers and scientists in semiconductor research, development and manufacturing. The problems at the end of each chapter and the numerous charts, figures and tables also make it appropriate for use as a text in graduate and advanced undergraduate courses in electrical engineering and materials science.

Silicon Carbide Power Devices

Silicon Carbide Power Devices
Title Silicon Carbide Power Devices PDF eBook
Author B. Jayant Baliga
Publisher World Scientific
Pages 526
Release 2006-01-05
Genre Technology & Engineering
ISBN 9812774521

Download Silicon Carbide Power Devices Book in PDF, Epub and Kindle

Power semiconductor devices are widely used for the control and management of electrical energy. The improving performance of power devices has enabled cost reductions and efficiency increases resulting in lower fossil fuel usage and less environmental pollution. This book provides the first cohesive treatment of the physics and design of silicon carbide power devices with an emphasis on unipolar structures. It uses the results of extensive numerical simulations to elucidate the operating principles of these important devices. Sample Chapter(s). Chapter 1: Introduction (72 KB). Contents: Material Properties and Technology; Breakdown Voltage; PiN Rectifiers; Schottky Rectifiers; Shielded Schottky Rectifiers; Metal-Semiconductor Field Effect Transistors; The Baliga-Pair Configuration; Planar Power MOSFETs; Shielded Planar MOSFETs; Trench-Gate Power MOSFETs; Shielded Trendch-Gate MOSFETs; Charge Coupled Structures; Integral Diodes; Lateral High Voltage FETs; Synopsis. Readership: For practising engineers working on power devices, and as a supplementary textbook for a graduate level course on power devices.

Silicon Devices

Silicon Devices
Title Silicon Devices PDF eBook
Author Kenneth A. Jackson
Publisher John Wiley & Sons
Pages 210
Release 2008-11-21
Genre Technology & Engineering
ISBN 3527611797

Download Silicon Devices Book in PDF, Epub and Kindle

Silicon is the most important material for the electronics industry. In modern microelectronics silicon devices like diodes and transistors play a major role, and devices like photodetectors or solar cells gain ever more importance. This concise handbook deals with one of the most important topics for the electronics industry. World renowned authors have contributed to this unique overview of the processing of silicon and silicon devices.

Silicon Photonics Design

Silicon Photonics Design
Title Silicon Photonics Design PDF eBook
Author Lukas Chrostowski
Publisher Cambridge University Press
Pages 439
Release 2015-03-12
Genre Science
ISBN 1107085454

Download Silicon Photonics Design Book in PDF, Epub and Kindle

This hands-on introduction to silicon photonics engineering equips students with everything they need to begin creating foundry-ready designs.

Liquid Crystal on Silicon Devices

Liquid Crystal on Silicon Devices
Title Liquid Crystal on Silicon Devices PDF eBook
Author Andrés Márquez
Publisher MDPI
Pages 172
Release 2019-11-19
Genre Science
ISBN 303921828X

Download Liquid Crystal on Silicon Devices Book in PDF, Epub and Kindle

Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 μm), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary.

Advanced Physical Models for Silicon Device Simulation

Advanced Physical Models for Silicon Device Simulation
Title Advanced Physical Models for Silicon Device Simulation PDF eBook
Author Andreas Schenk
Publisher Springer Science & Business Media
Pages 384
Release 1998-07-07
Genre Technology & Engineering
ISBN 9783211830529

Download Advanced Physical Models for Silicon Device Simulation Book in PDF, Epub and Kindle

From the reviews: "... this is a well produced book, written in a easy to read style, and will also be a very useful primer for someone starting out the field [...], and a useful source of reference for experienced users ..." Microelectronics Journal

Silicon Carbide Biotechnology

Silicon Carbide Biotechnology
Title Silicon Carbide Biotechnology PDF eBook
Author Stephen E. Saddow
Publisher Elsevier
Pages 496
Release 2011-11-14
Genre Technology & Engineering
ISBN 0123859077

Download Silicon Carbide Biotechnology Book in PDF, Epub and Kindle

Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. - Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists - Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials - Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices