Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing
Title Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing PDF eBook
Author Rajesh Kumar Tripathy
Publisher Elsevier
Pages 186
Release 2024-06-12
Genre Computers
ISBN 0443141401

Download Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing Book in PDF, Epub and Kindle

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques
Title Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques PDF eBook
Author Abdulhamit Subasi
Publisher Academic Press
Pages 458
Release 2019-03-16
Genre Medical
ISBN 0128176733

Download Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques Book in PDF, Epub and Kindle

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging
Title Machine Learning in Bio-Signal Analysis and Diagnostic Imaging PDF eBook
Author Nilanjan Dey
Publisher Academic Press
Pages 348
Release 2018-11-30
Genre Science
ISBN 012816087X

Download Machine Learning in Bio-Signal Analysis and Diagnostic Imaging Book in PDF, Epub and Kindle

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. - Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging - Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining - Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Advanced Methods and Tools for ECG Data Analysis

Advanced Methods and Tools for ECG Data Analysis
Title Advanced Methods and Tools for ECG Data Analysis PDF eBook
Author Gari D. Clifford
Publisher Artech House Publishers
Pages 412
Release 2006
Genre Computers
ISBN

Download Advanced Methods and Tools for ECG Data Analysis Book in PDF, Epub and Kindle

This practical book is the first one-stop resource to offer a thorough, up-to-date treatment of the techniques and methods used in electrocardiogram (ECG) data analysis, from fundamental principles to the latest tools in the field. The book places emphasis on the selection, modeling, classification, and interpretation of data based on advanced signal processing and artificial intelligence techniques.

ECG Signal Processing, Classification and Interpretation

ECG Signal Processing, Classification and Interpretation
Title ECG Signal Processing, Classification and Interpretation PDF eBook
Author Adam Gacek
Publisher Springer Science & Business Media
Pages 283
Release 2011-09-18
Genre Technology & Engineering
ISBN 0857298682

Download ECG Signal Processing, Classification and Interpretation Book in PDF, Epub and Kindle

The book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; detailed schemes, exercises and more advanced problems.

Applications of Machine Learning

Applications of Machine Learning
Title Applications of Machine Learning PDF eBook
Author Prashant Johri
Publisher Springer Nature
Pages 404
Release 2020-05-04
Genre Technology & Engineering
ISBN 9811533571

Download Applications of Machine Learning Book in PDF, Epub and Kindle

This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis

The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis
Title The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis PDF eBook
Author Jinming Duan
Publisher Frontiers Media SA
Pages 165
Release 2024-06-11
Genre Medical
ISBN 2832550193

Download The Combination of Data-Driven Machine Learning Approaches and Prior Knowledge for Robust Medical Image Processing and Analysis Book in PDF, Epub and Kindle

With the availability of big image datasets and state-of-the-art computing hardware, data-driven machine learning approaches, particularly deep learning, have been used in numerous medical image (CT-scans, MRI, PET, SPECT, etc..) computing tasks, ranging from image reconstruction, super-resolution, segmentation, registration all the way to disease classification and survival prediction. However, training such high-precision approaches often require large amounts of data to be collected and labelled and high-capacity graphics processing units (GPUs) installed, which are resource intensive and hence not always practical. Other hurdles such as the generalization ability to unseen new data and difficulty to interpret and explain can prevent their deployment to those clinical applications which deem such abilities imperative.