Shape-Preserving Approximation by Real and Complex Polynomials
Title | Shape-Preserving Approximation by Real and Complex Polynomials PDF eBook |
Author | Sorin G. Gal |
Publisher | Springer Science & Business Media |
Pages | 359 |
Release | 2010-06-09 |
Genre | Mathematics |
ISBN | 0817647031 |
First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography
Shape-Preserving Approximation by Real and Complex Polynomials
Title | Shape-Preserving Approximation by Real and Complex Polynomials PDF eBook |
Author | Sorin Gal |
Publisher | Birkhäuser |
Pages | 352 |
Release | 2010-11-16 |
Genre | Mathematics |
ISBN | 9780817672201 |
First comprehensive treatment in book form of shape-preserving approximation by real or complex polynomials in one or several variables Of interest to grad students and researchers in approximation theory, mathematical analysis, numerical analysis, Computer Aided Geometric Design, robotics, data fitting, chemistry, fluid mechanics, and engineering Contains many open problems to spur future research Rich and updated bibliography
Mathematical Aspects of Computer and Information Sciences
Title | Mathematical Aspects of Computer and Information Sciences PDF eBook |
Author | Ilias S. Kotsireas |
Publisher | Springer |
Pages | 631 |
Release | 2016-04-16 |
Genre | Computers |
ISBN | 331932859X |
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Mathematical Aspects of Computer and Information Sciences, MACIS 2015, held in Berlin, Germany, in November 2015. The 48 revised papers presented together with 7 invited papers were carefully reviewed and selected from numerous submissions. The papers are grouped in topical sections on curves and surfaces, applied algebraic geometry, cryptography, verified numerical computation, polynomial system solving, managing massive data, computational theory of differential and difference equations, data and knowledge exploration, algorithm engineering in geometric computing, real complexity: theory and practice, global optimization, and general session.
Frontiers of Fractal Analysis
Title | Frontiers of Fractal Analysis PDF eBook |
Author | Santo Banerjee |
Publisher | CRC Press |
Pages | 183 |
Release | 2022-07-07 |
Genre | Mathematics |
ISBN | 1000625877 |
The history of describing natural objects using geometry is as old as the advent of science itself, in which traditional shapes are the basis of our intuitive understanding of geometry. However, nature is not restricted to such Euclidean objects which are only characterized typically by integer dimensions. Hence, the conventional geometric approach cannot meet the requirements of solving or analysing nonlinear problems which are related with natural phenomena, therefore, the fractal theory has been born, which aims to understand complexity and provide an innovative way to recognize irregularity and complex systems. Although the concepts of fractal geometry have found wide applications in many forefront areas of science, engineering and societal issues, they also have interesting implications of a more practical nature for the older classical areas of science. Since its discovery, there has been a surge of research activities in using this powerful concept in almost every branch of scientific disciplines to gain deep insights into many unresolved problems. This book includes eight chapters which focus on gathering cutting-edge research and proposing application of fractals features in both traditional scientific disciplines and in applied fields.
Approximation By Complex Bernstein And Convolution Type Operators
Title | Approximation By Complex Bernstein And Convolution Type Operators PDF eBook |
Author | Sorin G Gal |
Publisher | World Scientific |
Pages | 350 |
Release | 2009-08-11 |
Genre | Mathematics |
ISBN | 9814466972 |
The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types: Bernstein, Bernstein—Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados.The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions: the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented.Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions.
Overconvergence in Complex Approximation
Title | Overconvergence in Complex Approximation PDF eBook |
Author | Sorin G. Gal |
Publisher | Springer Science & Business Media |
Pages | 206 |
Release | 2014-07-08 |
Genre | Mathematics |
ISBN | 1461470986 |
This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are presented. The main focus is on results for several q-Bernstein kind of operators with q > 1, when the geometric order of approximation 1/qn is obtained not only in complex compact disks but also in quaternion compact disks and in other compact subsets of the complex plane. The focus then shifts to quantitative overconvergence and convolution overconvergence results for the complex potentials generated by the Beta and Gamma Euler's functions. Finally quantitative overconvergence results for the most classical orthogonal expansions (of Chebyshev, Legendre, Hermite, Laguerre and Gegenbauer kinds) attached to vector-valued functions are presented. Each chapter concludes with a notes and open problems section, thus providing stimulation for further research. An extensive bibliography and index complete the text. This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.
Approximation by Max-Product Type Operators
Title | Approximation by Max-Product Type Operators PDF eBook |
Author | Barnabás Bede |
Publisher | Springer |
Pages | 468 |
Release | 2016-08-08 |
Genre | Mathematics |
ISBN | 3319341898 |
This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequality in the theory of possibility. Researchers in the fields of approximation of functions, signal theory, approximation of fuzzy numbers, image processing, and numerical analysis will find this book most beneficial. This book is also a good reference for graduates and postgraduates taking courses in approximation theory.