Service Life Estimation and Extension of Civil Engineering Structures
Title | Service Life Estimation and Extension of Civil Engineering Structures PDF eBook |
Author | Vistasp M. Karbhari |
Publisher | Elsevier |
Pages | 318 |
Release | 2010-12-20 |
Genre | Technology & Engineering |
ISBN | 0857090925 |
Service life estimation is an area of growing importance in civil engineering both for determining the remaining service life of civil engineering structures and for designing new structural systems with well-defined periods of functionality. Service life estimation and extension of civil engineering structures provides valuable information on the development and use of newer and more durable materials and methods of construction, as well as the development and use of new techniques of estimating service life.Part one discusses using fibre reinforced polymer (FRP) composites to extend the service-life of civil engineering structures. It considers the key issues in the use of FRP composites, examines the possibility of extending the service life of structurally deficient and deteriorating concrete structures and investigates the uncertainties of using FRP composites in the rehabilitation of civil engineering structures. Part two discusses estimating the service life of civil engineering structures including modelling service life and maintenance strategies and probabilistic methods for service life estimation. It goes on to investigate non-destructive evaluation and testing (NDE/NDT) as well as databases and knowledge-based systems for service life estimation of rehabilitated civil structures and pipelines.With its distinguished editors and international team of contributors Service life estimation and extension of civil engineering structures is an invaluable resource to academics, civil engineers, construction companies, infrastructure providers and all those with an interest in improving the service life, safety and reliability of civil engineering structures. - A single source of information on the service life of reinforced concrete and fibre-reinforced polymer (FRP) rehabilitated structures - Examines degradation mechanisms in composites for rehabilitation considering uncertainties in FRP reliability - Provides an overview of probabilistic methods for rehabilitation and service life estimation of corroded structures
Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites
Title | Rehabilitation of Pipelines Using Fiber-reinforced Polymer (FRP) Composites PDF eBook |
Author | Vistasp M. Karbhari |
Publisher | Elsevier |
Pages | 311 |
Release | 2015-05-23 |
Genre | Technology & Engineering |
ISBN | 0857096923 |
Rehabilitation of Pipelines Using Fibre-reinforced Polymer (FRP) Composites presents information on this critical component of industrial and civil infrastructures, also exploring the particular challenges that exist in the monitor and repair of pipeline systems. This book reviews key issues and techniques in this important area, including general issues such as the range of techniques using FRP composites and how they compare with the use of steel sleeves. In addition, the book discusses particular techniques, such as sleeve repair, patching, and overwrap systems. - Reviews key issues and techniques in the use of fiber reinforced polymer (FRP) composites as a flexible and cost-effective means to repair aging, corroded, or damaged pipelines - Examines general issues, including the range of techniques using FRP composites and how they compare with the use of steel sleeves - Discusses particular techniques such as sleeve repair, patching, and overwrap systems
Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of Structures
Title | Case Studies of Rehabilitation, Repair, Retrofitting, and Strengthening of Structures PDF eBook |
Author | Mourad M. Bakhoum |
Publisher | IABSE |
Pages | 196 |
Release | 2010 |
Genre | Architecture |
ISBN | 3857481242 |
Safety and performance concept. Reliability assessment of concrete structures
Title | Safety and performance concept. Reliability assessment of concrete structures PDF eBook |
Author | fib Fédération internationale du béton |
Publisher | FIB - Féd. Int. du Béton |
Pages | 375 |
Release | 2018-08-01 |
Genre | Technology & Engineering |
ISBN | 2883941262 |
Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.
Life-Cycle of Structures Under Uncertainty
Title | Life-Cycle of Structures Under Uncertainty PDF eBook |
Author | Dan M. Frangopol |
Publisher | CRC Press |
Pages | 216 |
Release | 2019-07-25 |
Genre | Mathematics |
ISBN | 0429624948 |
Life-cycle analysis is a systematic tool for efficient and effective service life management of deteriorating structures. In the last few decades, theoretical and practical approaches for life-cycle performance and cost analysis have been developed extensively due to increased demand on structural safety and service life extension. This book presents the state-of-the-art in life-cycle analysis and maintenance optimization for fatigue-sensitive structures. Both theoretical background and practical applications have been provided for academics, engineers and researchers. Concepts and approaches of life-cycle performance and cost analysis developed in recent decades are presented. The major topics covered include (a) probabilistic concepts of life-cycle performance and cost analysis, (b) inspection, monitoring and maintenance for fatigue cracks, (c) estimation of fatigue crack detection, (d) optimum inspection and monitoring planning, (e) multi-objective life-cycle optimization, and (f) decision making in life-cycle analysis. Life-cycle optimization covered in the book considers probability of fatigue crack detection, fatigue crack damage detection time, maintenance times, probability of failure, service life and total life-cycle cost. For the practical application and integration of recently developed approaches for inspection and maintenance planning, efficient and effective multi-objective optimization and decision making are presented. This book will help engineers engaged in civil and marine structures including students, researchers and practitioners with reliable and cost-effective maintenance planning of fatigue-sensitive structures, and to develop more advanced approaches and techniques in the field of life-cycle maintenance optimization and safety of structures under various aging and deteriorating conditions. Key Features: Provides the state-of-the-art in life-cycle cost analysis and optimization for fatigue-sensitive structures Provides a solid foundation of theoretical backgrounds and practical applications both for academics and practicing engineers and researchers Covers illustrative examples and recent development for optimum service life management Deals with various structures such as bridges and ships subjected to fatigue .
Bridge Engineering Handbook
Title | Bridge Engineering Handbook PDF eBook |
Author | Wai-Fah Chen |
Publisher | CRC Press |
Pages | 646 |
Release | 2014-01-24 |
Genre | Technology & Engineering |
ISBN | 1439852332 |
The second edition of this bestselling handbook covers virtually all the information an engineer would need to know about any type of bridge-from planning to construction to maintenance. It contains more than 2,500 tables, charts, and illustrations in a practical, ready-to-use format and an abundance of worked-out examples give readers numerous step-by-step design procedures. Extensively updated and featuring several new chapters, this volume, Construction and Maintenance, covers construction, inspection, bridge management systems, health monitoring, ratings, strengthening and rehabilitation, life cycle analysis and much more.
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures
Title | Eco-efficient Repair and Rehabilitation of Concrete Infrastructures PDF eBook |
Author | Fernando Pacheco-Torgal |
Publisher | Elsevier |
Pages | 457 |
Release | 2024-03-13 |
Genre | Technology & Engineering |
ISBN | 0443134715 |
Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, Second Edition provides an updated state-of-the-art review on the latest advances in this important research field. The first section is brought fully up-to-date and focuses on deterioration assessment methods. Section two contains brand new chapters on innovative concrete repair and rehabilitation materials including: fly ash-based alkali-activated repair materials for concrete exposed to aggressive environments; repairing concrete structures with alkali-activated metakaolin mortars; concrete with micro encapsulated self-healing materials; concrete repaired with bacteria; concrete structures repaired with engineered cementitious composites; concrete repaired by electrodeposition; the assessment of concrete after repair operations and durability of concrete repair. The final section has also been amended to include six new chapters on design, Life-cycle cost analysis and life-cycle assessment. These chapters include maintenance strategies for concrete structures; a comparison of different repair methods; life cycle assessment of the effects of climate change on bridge deterioration; life-cycle-cost benefits of cathodic protection of concrete structures; life-cycle cost analyses for concrete bridges exposed to chlorides and life-cycle analysis of repair of concrete pavements. The book will be an essential reference resource for materials scientists, civil and structural engineers, architects, structural designers and contractors working in the construction industry. - Presents the latest research findings on eco-efficient repair and rehabilitation of concrete infrastructures - Provides comprehensive coverage from damage detection and assessment, to repair strategies, and structural health monitoring - Diverse author base offering insights on construction practice and employed technologies worldwide - Includes a section on innovative repair and rehabilitation materials, as well as case studies on life cycle cost analysis and LCA