Hands-On Serverless Deep Learning with TensorFlow and AWS Lambda
Title | Hands-On Serverless Deep Learning with TensorFlow and AWS Lambda PDF eBook |
Author | Rustem Feyzkhanov |
Publisher | Impackt Publishing |
Pages | 126 |
Release | 2019-01-31 |
Genre | |
ISBN | 9781838551605 |
Use the serverless computing approach to save time and money Key Features Save your time by deploying deep learning models with ease using the AWS serverless infrastructure Get a solid grip on AWS services and use them with TensorFlow for efficient deep learning Includes tips, tricks and best practices on serverless deep learning that you can use in a production environment Book Description One of the main problems with deep learning models is finding the right way to deploy them within the company's IT infrastructure. Serverless architecture changes the rules of the game--instead of thinking about cluster management, scalability, and query processing, it allows us to focus specifically on training the model. This book prepares you to use your own custom-trained models with AWS Lambda to achieve a simplified serverless computing approach without spending much time and money. You will use AWS Services to deploy TensorFlow models without spending hours training and deploying them. You'll learn to deploy with serverless infrastructures, create APIs, process pipelines, and more with the tips included in this book. By the end of the book, you will have implemented your own project that demonstrates how to use AWS Lambda effectively so as to serve your TensorFlow models in the best possible way. What you will learn Gain practical experience by working hands-on with serverless infrastructures (AWS Lambda) Export and deploy deep learning models using Tensorflow Build a solid base in AWS and its various functions Create a deep learning API using AWS Lambda Look at the AWS API gateway Create deep learning processing pipelines using AWS functions Create deep learning production pipelines using AWS Lambda and AWS Step Function Who this book is for This book will benefit data scientists who want to learn how to deploy models easily and beginners who want to learn about deploying into the cloud. No prior knowledge of TensorFlow or AWS is required.
Deep Learning with TensorFlow 2 and Keras
Title | Deep Learning with TensorFlow 2 and Keras PDF eBook |
Author | Antonio Gulli |
Publisher | Packt Publishing Ltd |
Pages | 647 |
Release | 2019-12-27 |
Genre | Computers |
ISBN | 1838827722 |
Build machine and deep learning systems with the newly released TensorFlow 2 and Keras for the lab, production, and mobile devices Key FeaturesIntroduces and then uses TensorFlow 2 and Keras right from the startTeaches key machine and deep learning techniquesUnderstand the fundamentals of deep learning and machine learning through clear explanations and extensive code samplesBook Description Deep Learning with TensorFlow 2 and Keras, Second Edition teaches neural networks and deep learning techniques alongside TensorFlow (TF) and Keras. You’ll learn how to write deep learning applications in the most powerful, popular, and scalable machine learning stack available. TensorFlow is the machine learning library of choice for professional applications, while Keras offers a simple and powerful Python API for accessing TensorFlow. TensorFlow 2 provides full Keras integration, making advanced machine learning easier and more convenient than ever before. This book also introduces neural networks with TensorFlow, runs through the main applications (regression, ConvNets (CNNs), GANs, RNNs, NLP), covers two working example apps, and then dives into TF in production, TF mobile, and using TensorFlow with AutoML. What you will learnBuild machine learning and deep learning systems with TensorFlow 2 and the Keras APIUse Regression analysis, the most popular approach to machine learningUnderstand ConvNets (convolutional neural networks) and how they are essential for deep learning systems such as image classifiersUse GANs (generative adversarial networks) to create new data that fits with existing patternsDiscover RNNs (recurrent neural networks) that can process sequences of input intelligently, using one part of a sequence to correctly interpret anotherApply deep learning to natural human language and interpret natural language texts to produce an appropriate responseTrain your models on the cloud and put TF to work in real environmentsExplore how Google tools can automate simple ML workflows without the need for complex modelingWho this book is for This book is for Python developers and data scientists who want to build machine learning and deep learning systems with TensorFlow. This book gives you the theory and practice required to use Keras, TensorFlow 2, and AutoML to build machine learning systems. Some knowledge of machine learning is expected.
Machine Learning Bookcamp
Title | Machine Learning Bookcamp PDF eBook |
Author | Alexey Grigorev |
Publisher | Simon and Schuster |
Pages | 470 |
Release | 2021-11-23 |
Genre | Computers |
ISBN | 1617296813 |
The only way to learn is to practice! In Machine Learning Bookcamp, you''ll create and deploy Python-based machine learning models for a variety of increasingly challenging projects. Taking you from the basics of machine learning to complex applications such as image and text analysis, each new project builds on what you''ve learned in previous chapters. By the end of the bookcamp, you''ll have built a portfolio of business-relevant machine learning projects that hiring managers will be excited to see. about the technology Machine learning is an analysis technique for predicting trends and relationships based on historical data. As ML has matured as a discipline, an established set of algorithms has emerged for tackling a wide range of analysis tasks in business and research. By practicing the most important algorithms and techniques, you can quickly gain a footing in this important area. Luckily, that''s exactly what you''ll be doing in Machine Learning Bookcamp. about the book In Machine Learning Bookcamp you''ll learn the essentials of machine learning by completing a carefully designed set of real-world projects. Beginning as a novice, you''ll start with the basic concepts of ML before tackling your first challenge: creating a car price predictor using linear regression algorithms. You''ll then advance through increasingly difficult projects, developing your skills to build a churn prediction application, a flight delay calculator, an image classifier, and more. When you''re done working through these fun and informative projects, you''ll have a comprehensive machine learning skill set you can apply to practical on-the-job problems. what''s inside Code fundamental ML algorithms from scratch Collect and clean data for training models Use popular Python tools, including NumPy, Pandas, Scikit-Learn, and TensorFlow Apply ML to complex datasets with images and text Deploy ML models to a production-ready environment about the reader For readers with existing programming skills. No previous machine learning experience required. about the author Alexey Grigorev has more than ten years of experience as a software engineer, and has spent the last six years focused on machine learning. Currently, he works as a lead data scientist at the OLX Group, where he deals with content moderation and image models. He is the author of two other books on using Java for data science and TensorFlow for deep learning.
Machine Learning Engineering on AWS
Title | Machine Learning Engineering on AWS PDF eBook |
Author | Joshua Arvin Lat |
Publisher | Packt Publishing Ltd |
Pages | 530 |
Release | 2022-10-27 |
Genre | Computers |
ISBN | 1803231386 |
Work seamlessly with production-ready machine learning systems and pipelines on AWS by addressing key pain points encountered in the ML life cycle Key FeaturesGain practical knowledge of managing ML workloads on AWS using Amazon SageMaker, Amazon EKS, and moreUse container and serverless services to solve a variety of ML engineering requirementsDesign, build, and secure automated MLOps pipelines and workflows on AWSBook Description There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS. By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements. What you will learnFind out how to train and deploy TensorFlow and PyTorch models on AWSUse containers and serverless services for ML engineering requirementsDiscover how to set up a serverless data warehouse and data lake on AWSBuild automated end-to-end MLOps pipelines using a variety of servicesUse AWS Glue DataBrew and SageMaker Data Wrangler for data engineeringExplore different solutions for deploying deep learning models on AWSApply cost optimization techniques to ML environments and systemsPreserve data privacy and model privacy using a variety of techniquesWho this book is for This book is for machine learning engineers, data scientists, and AWS cloud engineers interested in working on production data engineering, machine learning engineering, and MLOps requirements using a variety of AWS services such as Amazon EC2, Amazon Elastic Kubernetes Service (EKS), Amazon SageMaker, AWS Glue, Amazon Redshift, AWS Lake Formation, and AWS Lambda -- all you need is an AWS account to get started. Prior knowledge of AWS, machine learning, and the Python programming language will help you to grasp the concepts covered in this book more effectively.
97 Things Every Data Engineer Should Know
Title | 97 Things Every Data Engineer Should Know PDF eBook |
Author | Tobias Macey |
Publisher | "O'Reilly Media, Inc." |
Pages | 243 |
Release | 2021-06-11 |
Genre | Computers |
ISBN | 1492062367 |
Take advantage of today's sky-high demand for data engineers. With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Contributors from notable companies including Twitter, Google, Stitch Fix, Microsoft, Capital One, and LinkedIn share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges. Edited by Tobias Macey, host of the popular Data Engineering Podcast, this book presents 97 concise and useful tips for cleaning, prepping, wrangling, storing, processing, and ingesting data. Data engineers, data architects, data team managers, data scientists, machine learning engineers, and software engineers will greatly benefit from the wisdom and experience of their peers. Topics include: The Importance of Data Lineage - Julien Le Dem Data Security for Data Engineers - Katharine Jarmul The Two Types of Data Engineering and Data Engineers - Jesse Anderson Six Dimensions for Picking an Analytical Data Warehouse - Gleb Mezhanskiy The End of ETL as We Know It - Paul Singman Building a Career as a Data Engineer - Vijay Kiran Modern Metadata for the Modern Data Stack - Prukalpa Sankar Your Data Tests Failed! Now What? - Sam Bail
97 Things Every Cloud Engineer Should Know
Title | 97 Things Every Cloud Engineer Should Know PDF eBook |
Author | Emily Freeman |
Publisher | O'Reilly Media |
Pages | 311 |
Release | 2020-12-04 |
Genre | Computers |
ISBN | 1492076708 |
If you create, manage, operate, or configure systems running in the cloud, you're a cloud engineer--even if you work as a system administrator, software developer, data scientist, or site reliability engineer. With this book, professionals from around the world provide valuable insight into today's cloud engineering role. These concise articles explore the entire cloud computing experience, including fundamentals, architecture, and migration. You'll delve into security and compliance, operations and reliability, and software development. And examine networking, organizational culture, and more. You're sure to find 1, 2, or 97 things that inspire you to dig deeper and expand your own career. "Three Keys to Making the Right Multicloud Decisions," Brendan O'Leary "Serverless Bad Practices," Manases Jesus Galindo Bello "Failing a Cloud Migration," Lee Atchison "Treat Your Cloud Environment as If It Were On Premises," Iyana Garry "What Is Toil, and Why Are SREs Obsessed with It?", Zachary Nickens "Lean QA: The QA Evolving in the DevOps World," Theresa Neate "How Economies of Scale Work in the Cloud," Jon Moore "The Cloud Is Not About the Cloud," Ken Corless "Data Gravity: The Importance of Data Management in the Cloud," Geoff Hughes "Even in the Cloud, the Network Is the Foundation," David Murray "Cloud Engineering Is About Culture, Not Containers," Holly Cummins
Practical MLOps
Title | Practical MLOps PDF eBook |
Author | Noah Gift |
Publisher | "O'Reilly Media, Inc." |
Pages | 461 |
Release | 2021-09-14 |
Genre | Computers |
ISBN | 1098102983 |
Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models. Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start. You'll discover how to: Apply DevOps best practices to machine learning Build production machine learning systems and maintain them Monitor, instrument, load-test, and operationalize machine learning systems Choose the correct MLOps tools for a given machine learning task Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware