Sensitivity Analysis

Sensitivity Analysis
Title Sensitivity Analysis PDF eBook
Author Emanuele Borgonovo
Publisher Springer
Pages 291
Release 2017-04-19
Genre Business & Economics
ISBN 3319522590

Download Sensitivity Analysis Book in PDF, Epub and Kindle

This book is an expository introduction to the methodology of sensitivity analysis of model output. It is primarily intended for investigators, students and researchers that are familiar with mathematical models but are less familiar with the techniques for performing their sensitivity analysis. A variety of sensitivity methods have been developed over the years. This monograph helps the analyst in her/his first exploration of this world. The main goal is to foster the recognition of the crucial role of sensitivity analysis methods as the techniques that allow us to gain insights from quantitative models. Also, exercising rigor in performing sensitivity analysis becomes increasingly relevant both to decision makers and modelers. The book helps the analyst in structuring her/his sensitivity analysis quest properly, so as to obtain the correct answer to the corresponding managerial question. The first part of the book covers Deterministic Methods, including Tornado Diagrams; One-Way Sensitivity Analysis; Differentiation-Based Methods and Local Sensitivity Analysis with Constraints. The second part looks at Probabilistic Methods, including Regression-Based methods, Variance-Based Methods, and Distribution-Based methods. The final section looks at Applications, including capital budgeting, sensitivity analysis in climate change modelling and in the risk assessment of a lunar space mission.

Sensitivity Analysis in Practice

Sensitivity Analysis in Practice
Title Sensitivity Analysis in Practice PDF eBook
Author Andrea Saltelli
Publisher John Wiley & Sons
Pages 232
Release 2004-07-16
Genre Mathematics
ISBN 047087094X

Download Sensitivity Analysis in Practice Book in PDF, Epub and Kindle

Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide

Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide
Title Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide PDF eBook
Author Agency for Health Care Research and Quality (U.S.)
Publisher Government Printing Office
Pages 236
Release 2013-02-21
Genre Medical
ISBN 1587634236

Download Developing a Protocol for Observational Comparative Effectiveness Research: A User's Guide Book in PDF, Epub and Kindle

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Sensitivity Analysis

Sensitivity Analysis
Title Sensitivity Analysis PDF eBook
Author Andrea Saltelli
Publisher Wiley
Pages 0
Release 2009-03-16
Genre Mathematics
ISBN 9780470743829

Download Sensitivity Analysis Book in PDF, Epub and Kindle

The Wiley Paperback Series makes valuable content more accessible to a new generation of statisticians, mathematicians and scientists. Sensitivity analysis is used to ascertain how a given model output depends upon the input parameters. This is an important method for checking the quality of a given model, as well as a powerful tool for checking the robustness and reliability of its analysis. The topic is acknowledged as essential for good modelling practice and is an implicit part of any modelling field. Offers an accessible introduction to sensitivity analysis. Covers all the latest research. Illustrates concepts with numerous examples, applications and case studies. Includes contributions from the leading researchers active in developing strategies for sensitivity analysis. The principles of sensitivity analysis are carefully described and suitable methods for approaching many types of problems are given. The book introduces the modeller to the entire casual assessment chain, from data to predictions, whilst explaining the impact of source uncertainties and framing assumptions. A ‘hitch-hikers guide’ is included to allow the more experienced reader to readily access specific applications. Modellers from a wide range of disciplines, including biostatistics, economics, environmental impact assessment, chemistry and engineering will benefit greatly from the numerous examples and applications. "Presents many different sensitivity analysis methodologies and demonstrates their usefulness in scientific research." (Zentralblatt MATH)

The Prevention and Treatment of Missing Data in Clinical Trials

The Prevention and Treatment of Missing Data in Clinical Trials
Title The Prevention and Treatment of Missing Data in Clinical Trials PDF eBook
Author National Research Council
Publisher National Academies Press
Pages 163
Release 2010-12-21
Genre Medical
ISBN 030918651X

Download The Prevention and Treatment of Missing Data in Clinical Trials Book in PDF, Epub and Kindle

Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

Global Sensitivity Analysis

Global Sensitivity Analysis
Title Global Sensitivity Analysis PDF eBook
Author Andrea Saltelli
Publisher John Wiley & Sons
Pages 304
Release 2008-02-28
Genre Mathematics
ISBN 9780470725177

Download Global Sensitivity Analysis Book in PDF, Epub and Kindle

Complex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping assumptions into inferences. A modeller makes assumptions about laws pertaining to the system, about its status and a plethora of other, often arcane, system variables and internal model settings. To what extent can we rely on the model-based inference when most of these assumptions are fraught with uncertainties? Global Sensitivity Analysis offers an accessible treatment of such problems via quantitative sensitivity analysis, beginning with the first principles and guiding the reader through the full range of recommended practices with a rich set of solved exercises. The text explains the motivation for sensitivity analysis, reviews the required statistical concepts, and provides a guide to potential applications. The book: Provides a self-contained treatment of the subject, allowing readers to learn and practice global sensitivity analysis without further materials. Presents ways to frame the analysis, interpret its results, and avoid potential pitfalls. Features numerous exercises and solved problems to help illustrate the applications. Is authored by leading sensitivity analysis practitioners, combining a range of disciplinary backgrounds. Postgraduate students and practitioners in a wide range of subjects, including statistics, mathematics, engineering, physics, chemistry, environmental sciences, biology, toxicology, actuarial sciences, and econometrics will find much of use here. This book will prove equally valuable to engineers working on risk analysis and to financial analysts concerned with pricing and hedging.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology
Title Sensitivity Analysis: Matrix Methods in Demography and Ecology PDF eBook
Author Hal Caswell
Publisher Springer
Pages 308
Release 2019-04-02
Genre Social Science
ISBN 3030105342

Download Sensitivity Analysis: Matrix Methods in Demography and Ecology Book in PDF, Epub and Kindle

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.