Independent Component Analysis

Independent Component Analysis
Title Independent Component Analysis PDF eBook
Author Aapo Hyvärinen
Publisher John Wiley & Sons
Pages 505
Release 2004-04-05
Genre Science
ISBN 0471464198

Download Independent Component Analysis Book in PDF, Epub and Kindle

A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.

Introduction to Machine Learning

Introduction to Machine Learning
Title Introduction to Machine Learning PDF eBook
Author Ethem Alpaydin
Publisher MIT Press
Pages 639
Release 2014-08-22
Genre Computers
ISBN 0262028182

Download Introduction to Machine Learning Book in PDF, Epub and Kindle

Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.

Stochastic Approximation

Stochastic Approximation
Title Stochastic Approximation PDF eBook
Author Vivek S. Borkar
Publisher Springer
Pages 177
Release 2009-01-01
Genre Mathematics
ISBN 938627938X

Download Stochastic Approximation Book in PDF, Epub and Kindle

Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition
Title Neural Networks for Pattern Recognition PDF eBook
Author Christopher M. Bishop
Publisher Oxford University Press
Pages 501
Release 1995-11-23
Genre Computers
ISBN 0198538642

Download Neural Networks for Pattern Recognition Book in PDF, Epub and Kindle

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.

Regression Graphics

Regression Graphics
Title Regression Graphics PDF eBook
Author R. Dennis Cook
Publisher John Wiley & Sons
Pages 380
Release 1998-09-30
Genre Mathematics
ISBN 9780471193654

Download Regression Graphics Book in PDF, Epub and Kindle

Zur graphischen Präsentation von Regressionsdaten gibt es seit dem Vormarsch der Computertechnik vielfältige neue Möglichkeiten, die über die klassischen Ansätze hinausgehen. Der Autor betritt mit seinen Ideen häufig Neuland; er illustriert sie mit zahlreichen Beispielen, Diagrammen und Abbildungen (die entsprechenden 3D- und Farbversionen sind über Internet abrufbar). (11/98)

Static Analysis

Static Analysis
Title Static Analysis PDF eBook
Author Agostino Cortesi
Publisher Springer Science & Business Media
Pages 366
Release 1999-09-08
Genre Computers
ISBN 3540664599

Download Static Analysis Book in PDF, Epub and Kindle

Static analysis is increasingly recognized as a fundamental reasearch area aimed at studying and developing tools for high performance implementations and v- i cation systems for all programming language paradigms. The last two decades have witnessed substantial developments in this eld, ranging from theoretical frameworks to design, implementation, and application of analyzers in optim- ing compilers. Since 1994, SAS has been the annual conference and forum for researchers in all aspects of static analysis. This volume contains the proceedings of the 6th International Symposium on Static Analysis (SAS’99) which was held in Venice, Italy, on 22{24 September 1999. The previous SAS conferences were held in Namur (Belgium), Glasgow (UK), Aachen (Germany), Paris (France), and Pisa (Italy). The program committee selected 18 papers out of 42 submissions on the basis of at least three reviews. The resulting volume o ers to the reader a complete landscape of the research in this area. The papers contribute to the following topics: foundations of static analysis, abstract domain design, and applications of static analysis to di erent programming paradigms (concurrent, synchronous, imperative, object oriented, logical, and functional). In particular, several papers use static analysis for obtaining state space reduction in concurrent systems. New application elds are also addressed, such as the problems of security and secrecy.

Large-scale Kernel Machines

Large-scale Kernel Machines
Title Large-scale Kernel Machines PDF eBook
Author Léon Bottou
Publisher MIT Press
Pages 409
Release 2007
Genre Computers
ISBN 0262026252

Download Large-scale Kernel Machines Book in PDF, Epub and Kindle

Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov