Independent Component Analysis
Title | Independent Component Analysis PDF eBook |
Author | Aapo Hyvärinen |
Publisher | John Wiley & Sons |
Pages | 505 |
Release | 2004-04-05 |
Genre | Science |
ISBN | 0471464198 |
A comprehensive introduction to ICA for students and practitioners Independent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and more. Independent Component Analysis is divided into four sections that cover: * General mathematical concepts utilized in the book * The basic ICA model and its solution * Various extensions of the basic ICA model * Real-world applications for ICA models Authors Hyvarinen, Karhunen, and Oja are well known for their contributions to the development of ICA and here cover all the relevant theory, new algorithms, and applications in various fields. Researchers, students, and practitioners from a variety of disciplines will find this accessible volume both helpful and informative.
Introduction to Machine Learning
Title | Introduction to Machine Learning PDF eBook |
Author | Ethem Alpaydin |
Publisher | MIT Press |
Pages | 639 |
Release | 2014-08-22 |
Genre | Computers |
ISBN | 0262028182 |
Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.
Stochastic Approximation
Title | Stochastic Approximation PDF eBook |
Author | Vivek S. Borkar |
Publisher | Springer |
Pages | 177 |
Release | 2009-01-01 |
Genre | Mathematics |
ISBN | 938627938X |
Neural Networks for Pattern Recognition
Title | Neural Networks for Pattern Recognition PDF eBook |
Author | Christopher M. Bishop |
Publisher | Oxford University Press |
Pages | 501 |
Release | 1995-11-23 |
Genre | Computers |
ISBN | 0198538642 |
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.
Regression Graphics
Title | Regression Graphics PDF eBook |
Author | R. Dennis Cook |
Publisher | John Wiley & Sons |
Pages | 380 |
Release | 1998-09-30 |
Genre | Mathematics |
ISBN | 9780471193654 |
Zur graphischen Präsentation von Regressionsdaten gibt es seit dem Vormarsch der Computertechnik vielfältige neue Möglichkeiten, die über die klassischen Ansätze hinausgehen. Der Autor betritt mit seinen Ideen häufig Neuland; er illustriert sie mit zahlreichen Beispielen, Diagrammen und Abbildungen (die entsprechenden 3D- und Farbversionen sind über Internet abrufbar). (11/98)
Static Analysis
Title | Static Analysis PDF eBook |
Author | Agostino Cortesi |
Publisher | Springer Science & Business Media |
Pages | 366 |
Release | 1999-09-08 |
Genre | Computers |
ISBN | 3540664599 |
Static analysis is increasingly recognized as a fundamental reasearch area aimed at studying and developing tools for high performance implementations and v- i cation systems for all programming language paradigms. The last two decades have witnessed substantial developments in this eld, ranging from theoretical frameworks to design, implementation, and application of analyzers in optim- ing compilers. Since 1994, SAS has been the annual conference and forum for researchers in all aspects of static analysis. This volume contains the proceedings of the 6th International Symposium on Static Analysis (SAS’99) which was held in Venice, Italy, on 22{24 September 1999. The previous SAS conferences were held in Namur (Belgium), Glasgow (UK), Aachen (Germany), Paris (France), and Pisa (Italy). The program committee selected 18 papers out of 42 submissions on the basis of at least three reviews. The resulting volume o ers to the reader a complete landscape of the research in this area. The papers contribute to the following topics: foundations of static analysis, abstract domain design, and applications of static analysis to di erent programming paradigms (concurrent, synchronous, imperative, object oriented, logical, and functional). In particular, several papers use static analysis for obtaining state space reduction in concurrent systems. New application elds are also addressed, such as the problems of security and secrecy.
Large-scale Kernel Machines
Title | Large-scale Kernel Machines PDF eBook |
Author | Léon Bottou |
Publisher | MIT Press |
Pages | 409 |
Release | 2007 |
Genre | Computers |
ISBN | 0262026252 |
Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov