Seminar On Minimal Submanifolds. (AM-103), Volume 103

Seminar On Minimal Submanifolds. (AM-103), Volume 103
Title Seminar On Minimal Submanifolds. (AM-103), Volume 103 PDF eBook
Author Enrico Bombieri
Publisher Princeton University Press
Pages 368
Release 2016-03-02
Genre Mathematics
ISBN 1400881439

Download Seminar On Minimal Submanifolds. (AM-103), Volume 103 Book in PDF, Epub and Kindle

The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.

Seminar on Minimal Submanifolds

Seminar on Minimal Submanifolds
Title Seminar on Minimal Submanifolds PDF eBook
Author Enrico Bombieri
Publisher
Pages 358
Release 1983
Genre Mathematics
ISBN 9780691083193

Download Seminar on Minimal Submanifolds Book in PDF, Epub and Kindle

The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.

Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields

Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields
Title Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields PDF eBook
Author Yuan-Jen Chiang
Publisher Springer Science & Business Media
Pages 418
Release 2013-06-18
Genre Mathematics
ISBN 3034805349

Download Developments of Harmonic Maps, Wave Maps and Yang-Mills Fields into Biharmonic Maps, Biwave Maps and Bi-Yang-Mills Fields Book in PDF, Epub and Kindle

Harmonic maps between Riemannian manifolds were first established by James Eells and Joseph H. Sampson in 1964. Wave maps are harmonic maps on Minkowski spaces and have been studied since the 1990s. Yang-Mills fields, the critical points of Yang-Mills functionals of connections whose curvature tensors are harmonic, were explored by a few physicists in the 1950s, and biharmonic maps (generalizing harmonic maps) were introduced by Guoying Jiang in 1986. The book presents an overview of the important developments made in these fields since they first came up. Furthermore, it introduces biwave maps (generalizing wave maps) which were first studied by the author in 2009, and bi-Yang-Mills fields (generalizing Yang-Mills fields) first investigated by Toshiyuki Ichiyama, Jun-Ichi Inoguchi and Hajime Urakawa in 2008. Other topics discussed are exponential harmonic maps, exponential wave maps and exponential Yang-Mills fields.

The Abel Prize 2008-2012

The Abel Prize 2008-2012
Title The Abel Prize 2008-2012 PDF eBook
Author Helge Holden
Publisher Springer Science & Business Media
Pages 561
Release 2014-01-21
Genre Mathematics
ISBN 3642394493

Download The Abel Prize 2008-2012 Book in PDF, Epub and Kindle

Covering the years 2008-2012, this book profiles the life and work of recent winners of the Abel Prize: · John G. Thompson and Jacques Tits, 2008 · Mikhail Gromov, 2009 · John T. Tate Jr., 2010 · John W. Milnor, 2011 · Endre Szemerédi, 2012. The profiles feature autobiographical information as well as a description of each mathematician's work. In addition, each profile contains a complete bibliography, a curriculum vitae, as well as photos — old and new. As an added feature, interviews with the Laureates are presented on an accompanying web site (http://extras.springer.com/). The book also presents a history of the Abel Prize written by the historian Kim Helsvig, and includes a facsimile of a letter from Niels Henrik Abel, which is transcribed, translated into English, and placed into historical perspective by Christian Skau. This book follows on The Abel Prize: 2003-2007, The First Five Years (Springer, 2010), which profiles the work of the first Abel Prize winners.

Minimal Surfaces I

Minimal Surfaces I
Title Minimal Surfaces I PDF eBook
Author Ulrich Dierkes
Publisher Springer Science & Business Media
Pages 528
Release 2013-11-27
Genre Mathematics
ISBN 3662027917

Download Minimal Surfaces I Book in PDF, Epub and Kindle

Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.

Seminar on Minimal Submanifolds

Seminar on Minimal Submanifolds
Title Seminar on Minimal Submanifolds PDF eBook
Author Enrico Bombieri
Publisher
Pages 358
Release 1983
Genre Minimal submanifolds
ISBN 9780691083247

Download Seminar on Minimal Submanifolds Book in PDF, Epub and Kindle

The Description for this book, Seminar On Minimal Submanifolds. (AM-103), will be forthcoming.

Regularity of Minimal Surfaces

Regularity of Minimal Surfaces
Title Regularity of Minimal Surfaces PDF eBook
Author Ulrich Dierkes
Publisher Springer Science & Business Media
Pages 634
Release 2010-08-16
Genre Mathematics
ISBN 3642117007

Download Regularity of Minimal Surfaces Book in PDF, Epub and Kindle

Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.