Semiconductor Devices

Semiconductor Devices
Title Semiconductor Devices PDF eBook
Author James Fiore
Publisher
Pages 407
Release 2017-05-11
Genre
ISBN 9781796543537

Download Semiconductor Devices Book in PDF, Epub and Kindle

Across 15 chapters, Semiconductor Devices covers the theory and application of discrete semiconductor devices including various types of diodes, bipolar junction transistors, JFETs, MOSFETs and IGBTs. Applications include rectifying, clipping, clamping, switching, small signal amplifiers and followers, and class A, B and D power amplifiers. Focusing on practical aspects of analysis and design, interpretations of device data sheets are integrated throughout the chapters. Computer simulations of circuit responses are included as well. Each chapter features a set of learning objectives, numerous sample problems, and a variety of exercises designed to hone and test circuit design and analysis skills. A companion laboratory manual is available. This is the print version of the on-line OER.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Title Physics of Semiconductor Devices PDF eBook
Author Simon M. Sze
Publisher John Wiley & Sons
Pages 828
Release 2006-12-13
Genre Technology & Engineering
ISBN 0470068302

Download Physics of Semiconductor Devices Book in PDF, Epub and Kindle

The Third Edition of the standard textbook and reference in the field of semiconductor devices This classic book has set the standard for advanced study and reference in the semiconductor device field. Now completely updated and reorganized to reflect the tremendous advances in device concepts and performance, this Third Edition remains the most detailed and exhaustive single source of information on the most important semiconductor devices. It gives readers immediate access to detailed descriptions of the underlying physics and performance characteristics of all major bipolar, field-effect, microwave, photonic, and sensor devices. Designed for graduate textbook adoptions and reference needs, this new edition includes: A complete update of the latest developments New devices such as three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more Materials completely reorganized Problem sets at the end of each chapter All figures reproduced at the highest quality Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.

Complete Guide to Semiconductor Devices

Complete Guide to Semiconductor Devices
Title Complete Guide to Semiconductor Devices PDF eBook
Author Kwok K. Ng
Publisher Wiley-IEEE Press
Pages 768
Release 2002-07-25
Genre Technology & Engineering
ISBN 9780471202400

Download Complete Guide to Semiconductor Devices Book in PDF, Epub and Kindle

A definitive and up-to-date handbook of semiconductor devices Semiconductor devices, the basic components of integrated circuits, are responsible for the rapid growth of the electronics industry over the past fifty years. Because there is a growing need for faster and more complex systems for the information age, existing semiconductor devices are constantly being studied for improvement, and new ones are being continually invented. As a result, a large number of types and variations of devices are available in the literature. The Second Edition of this unique engineering guide continues to be the only available complete collection of semiconductor devices, identifying 74 major devices and more than 200 variations of these devices. As in the First Edition, the value of this text lies in its comprehensive, yet highly readable presentation and its easy-to-use format, making it suitable for a wide range of audiences. Essential information is presented for a quick, balanced overview Each chapter is designed to cover only one specific device, for easy and focused reference Each device is discussed in detail, always including its history, its structure, its characteristics, and its applications The Second Edition has been significantly updated with eight new chapters, and the material rearranged to reflect recent developments in the field. As such, it remains an ideal reference source for graduate students who want a quick survey of the field, as well as for practitioners and researchers who need quick access to basic information, and a valuable pragmatic handbook for salespeople, lawyers, and anyone associated with the semiconductor industry.

Fundamentals of Power Semiconductor Devices

Fundamentals of Power Semiconductor Devices
Title Fundamentals of Power Semiconductor Devices PDF eBook
Author B. Jayant Baliga
Publisher Springer
Pages 1114
Release 2018-09-28
Genre Technology & Engineering
ISBN 3319939882

Download Fundamentals of Power Semiconductor Devices Book in PDF, Epub and Kindle

Fundamentals of Power Semiconductor Devices provides an in-depth treatment of the physics of operation of power semiconductor devices that are commonly used by the power electronics industry. Analytical models for explaining the operation of all power semiconductor devices are shown. The treatment here focuses on silicon devices but includes the unique attributes and design requirements for emerging silicon carbide devices. The book will appeal to practicing engineers in the power semiconductor device community.

Physics of Semiconductor Devices

Physics of Semiconductor Devices
Title Physics of Semiconductor Devices PDF eBook
Author Simon M. Sze
Publisher John Wiley & Sons
Pages 944
Release 2021-03-03
Genre Technology & Engineering
ISBN 1119429110

Download Physics of Semiconductor Devices Book in PDF, Epub and Kindle

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.

Principles of Semiconductor Devices

Principles of Semiconductor Devices
Title Principles of Semiconductor Devices PDF eBook
Author Sima Dimitrijev
Publisher Oxford University Press, USA
Pages 0
Release 2012
Genre TECHNOLOGY & ENGINEERING
ISBN 9780195388039

Download Principles of Semiconductor Devices Book in PDF, Epub and Kindle

"This dynamic text applies physics concepts and equations to practical, real-world applications of semiconductor device theory"-- Provided by publisher.

Analysis and Simulation of Semiconductor Devices

Analysis and Simulation of Semiconductor Devices
Title Analysis and Simulation of Semiconductor Devices PDF eBook
Author S. Selberherr
Publisher Springer Science & Business Media
Pages 308
Release 2012-12-06
Genre Technology & Engineering
ISBN 3709187524

Download Analysis and Simulation of Semiconductor Devices Book in PDF, Epub and Kindle

The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.