Select Ideas in Partial Differential Equations
Title | Select Ideas in Partial Differential Equations PDF eBook |
Author | Peter J Costa |
Publisher | Springer Nature |
Pages | 228 |
Release | 2022-06-01 |
Genre | Mathematics |
ISBN | 3031024346 |
This text provides an introduction to the applications and implementations of partial differential equations. The content is structured in three progressive levels which are suited for upper–level undergraduates with background in multivariable calculus and elementary linear algebra (chapters 1–5), first– and second–year graduate students who have taken advanced calculus and real analysis (chapters 6-7), as well as doctoral-level students with an understanding of linear and nonlinear functional analysis (chapters 7-8) respectively. Level one gives readers a full exposure to the fundamental linear partial differential equations of physics. It details methods to understand and solve these equations leading ultimately to solutions of Maxwell’s equations. Level two addresses nonlinearity and provides examples of separation of variables, linearizing change of variables, and the inverse scattering transform for select nonlinear partial differential equations. Level three presents rich sources of advanced techniques and strategies for the study of nonlinear partial differential equations, including unique and previously unpublished results. Ultimately the text aims to familiarize readers in applied mathematics, physics, and engineering with some of the myriad techniques that have been developed to model and solve linear and nonlinear partial differential equations.
Partial Differential Equations
Title | Partial Differential Equations PDF eBook |
Author | Walter A. Strauss |
Publisher | John Wiley & Sons |
Pages | 467 |
Release | 2007-12-21 |
Genre | Mathematics |
ISBN | 0470054565 |
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Partial Differential Equations
Title | Partial Differential Equations PDF eBook |
Author | Lawrence C. Evans |
Publisher | American Mathematical Soc. |
Pages | 778 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0821849743 |
This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.
Partial Differential Equations
Title | Partial Differential Equations PDF eBook |
Author | Michael Shearer |
Publisher | Princeton University Press |
Pages | 286 |
Release | 2015-03-01 |
Genre | Mathematics |
ISBN | 0691161291 |
An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Ordinary and Partial Differential Equations
Title | Ordinary and Partial Differential Equations PDF eBook |
Author | Ravi P. Agarwal |
Publisher | Springer Science & Business Media |
Pages | 422 |
Release | 2008-11-13 |
Genre | Mathematics |
ISBN | 0387791469 |
In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
Implementing Spectral Methods for Partial Differential Equations
Title | Implementing Spectral Methods for Partial Differential Equations PDF eBook |
Author | David A. Kopriva |
Publisher | Springer Science & Business Media |
Pages | 397 |
Release | 2009-05-27 |
Genre | Mathematics |
ISBN | 9048122619 |
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Partial Differential Equations with Numerical Methods
Title | Partial Differential Equations with Numerical Methods PDF eBook |
Author | Stig Larsson |
Publisher | Springer Science & Business Media |
Pages | 263 |
Release | 2008-12-05 |
Genre | Mathematics |
ISBN | 3540887059 |
The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.