Search and Optimization by Metaheuristics

Search and Optimization by Metaheuristics
Title Search and Optimization by Metaheuristics PDF eBook
Author Ke-Lin Du
Publisher Birkhäuser
Pages 437
Release 2016-07-20
Genre Computers
ISBN 3319411926

Download Search and Optimization by Metaheuristics Book in PDF, Epub and Kindle

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.

Meta-Heuristics

Meta-Heuristics
Title Meta-Heuristics PDF eBook
Author Stefan Voß
Publisher Springer Science & Business Media
Pages 513
Release 2012-12-06
Genre Business & Economics
ISBN 1461557755

Download Meta-Heuristics Book in PDF, Epub and Kindle

Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimizations comprises a carefully refereed selection of extended versions of the best papers presented at the Second Meta-Heuristics Conference (MIC 97). The selected articles describe the most recent developments in theory and applications of meta-heuristics, heuristics for specific problems, and comparative case studies. The book is divided into six parts, grouped mainly by the techniques considered. The extensive first part with twelve papers covers tabu search and its application to a great variety of well-known combinatorial optimization problems (including the resource-constrained project scheduling problem and vehicle routing problems). In the second part we find one paper where tabu search and simulated annealing are investigated comparatively and two papers which consider hybrid methods combining tabu search with genetic algorithms. The third part has four papers on genetic and evolutionary algorithms. Part four arrives at a new paradigm within meta-heuristics. The fifth part studies the behavior of parallel local search algorithms mainly from a tabu search perspective. The final part examines a great variety of additional meta-heuristics topics, including neural networks and variable neighbourhood search as well as guided local search. Furthermore, the integration of meta-heuristics with the branch-and-bound paradigm is investigated.

An Introduction to Metaheuristics for Optimization

An Introduction to Metaheuristics for Optimization
Title An Introduction to Metaheuristics for Optimization PDF eBook
Author Bastien Chopard
Publisher Springer
Pages
Release 2019-01-11
Genre Computers
ISBN 9783319930725

Download An Introduction to Metaheuristics for Optimization Book in PDF, Epub and Kindle

The authors stress the relative simplicity, efficiency, flexibility of use, and suitability of various approaches used to solve difficult optimization problems. The authors are experienced, interdisciplinary lecturers and researchers and in their explanations they demonstrate many shared foundational concepts among the key methodologies. This textbook is a suitable introduction for undergraduate and graduate students, researchers, and professionals in computer science, engineering, and logistics.

Metaheuristics

Metaheuristics
Title Metaheuristics PDF eBook
Author Karl F. Doerner
Publisher Springer Science & Business Media
Pages 409
Release 2007-08-13
Genre Mathematics
ISBN 0387719210

Download Metaheuristics Book in PDF, Epub and Kindle

This book’s aim is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.

Metaheuristics for Hard Optimization

Metaheuristics for Hard Optimization
Title Metaheuristics for Hard Optimization PDF eBook
Author Johann Dréo
Publisher Springer Science & Business Media
Pages 373
Release 2006-01-16
Genre Mathematics
ISBN 3540309667

Download Metaheuristics for Hard Optimization Book in PDF, Epub and Kindle

Contains case studies from engineering and operations research Includes commented literature for each chapter

Metaheuristic Search Concepts

Metaheuristic Search Concepts
Title Metaheuristic Search Concepts PDF eBook
Author Günther Zäpfel
Publisher Springer Science & Business Media
Pages 315
Release 2010-03-10
Genre Business & Economics
ISBN 3642113435

Download Metaheuristic Search Concepts Book in PDF, Epub and Kindle

In many decision problems, e.g. from the area of production and logistics manage ment, the evaluation of alternatives and the determination of an optimal or at least suboptimal solution is an important but dif?cult task. For most such problems no ef?cient algorithm is known and classical approaches of Operations Research like Mixed Integer Linear Programming or Dynamic Pro gramming are often of limited use due to excessive computation time. Therefore, dedicated heuristic solution approaches have been developed which aim at providing good solutions in reasonable time for a given problem. However, such methods have two major drawbacks: First, they are tailored to a speci?c prob lem and their adaption to other problems is dif?cult and in many cases even impos sible. Second, they are typically designed to “build” one single solution in the most effective way, whereas most decision problems have a vast number of feasible solu tions. Hence usually the chances are high that there exist better ones. To overcome these limitations, problem independent search strategies, in particular metaheuris tics, have been proposed. This book provides an elementary step by step introduction to metaheuristics focusing on the search concepts they are based on. The ?rst part demonstrates un derlying concepts of search strategies using a simple example optimization problem.

Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)
Title Essentials of Metaheuristics (Second Edition) PDF eBook
Author Sean Luke
Publisher
Pages 242
Release 2012-12-20
Genre Algorithms
ISBN 9781300549628

Download Essentials of Metaheuristics (Second Edition) Book in PDF, Epub and Kindle

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.