Python Data Science Essentials

Python Data Science Essentials
Title Python Data Science Essentials PDF eBook
Author Alberto Boschetti
Publisher Packt Publishing Ltd
Pages 373
Release 2016-10-28
Genre Computers
ISBN 1786462834

Download Python Data Science Essentials Book in PDF, Epub and Kindle

Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.

Python Data Science Handbook

Python Data Science Handbook
Title Python Data Science Handbook PDF eBook
Author Jake VanderPlas
Publisher "O'Reilly Media, Inc."
Pages 609
Release 2016-11-21
Genre Computers
ISBN 1491912138

Download Python Data Science Handbook Book in PDF, Epub and Kindle

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Seaborn

Seaborn
Title Seaborn PDF eBook
Author Craig Moodie
Publisher Roaring Brook Press
Pages 216
Release 2008-08-19
Genre Young Adult Fiction
ISBN 1429917954

Download Seaborn Book in PDF, Epub and Kindle

"THE BOAT IS SINKING. YOU HAVE TO MOVE." When Luke's sailing trip goes horribly wrong, he must face the vast and brutal sea in this story of one boy's survival and coming-of-age. On the evening before Luke's family's annual summer sailing trip off Cape Cod, Luke's mother leaves. Luke is left with his angry, confused father on a small boat for a week and the trip goes horribly wrong when a summer storm sweeps Luke's father overboard. Not knowing whether his father is dead or alive, Luke must figure out how to survive on a wrecked sailboat far out to sea. Fans of Gary Paulsen and Will Hobbs will be captivated by Craig Moodie's depiction of the North Atlantic in this coming-of-age adventure.

Python Machine Learning

Python Machine Learning
Title Python Machine Learning PDF eBook
Author Wei-Meng Lee
Publisher John Wiley & Sons
Pages 324
Release 2019-04-04
Genre Computers
ISBN 1119545692

Download Python Machine Learning Book in PDF, Epub and Kindle

Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.

Python 3 Data Visualization Using ChatGPT / GPT-4

Python 3 Data Visualization Using ChatGPT / GPT-4
Title Python 3 Data Visualization Using ChatGPT / GPT-4 PDF eBook
Author Oswald Campesato
Publisher Stylus Publishing, LLC
Pages 310
Release 2023-12-12
Genre Computers
ISBN 1501518852

Download Python 3 Data Visualization Using ChatGPT / GPT-4 Book in PDF, Epub and Kindle

This book is designed to show readers the concepts of Python 3 programming and the art of data visualization. It also explores cutting-edge techniques using ChatGPT/GPT-4 in harmony with Python for generating visuals that tell more compelling data stories. Chapter 1 introduces the essentials of Python, covering a vast array of topics from basic data types, loops, and functions to more advanced constructs like dictionaries, sets, and matrices. In Chapter 2, the focus shifts to NumPy and its powerful array operations, leading into data visualization using prominent libraries such as Matplotlib. Chapter 6 includes Seaborn's rich visualization tools, offering insights into datasets like Iris and Titanic. Further, the book covers other visualization tools and techniques, including SVG graphics, D3 for dynamic visualizations, and more. Chapter 7 covers information about the main features of ChatGPT and GPT-4, as well as some of their competitors. Chapter 8 contains examples of using ChatGPT in order to perform data visualization, such as charts and graphs that are based on datasets (e.g., the Titanic dataset). Companion files with code, datasets, and figures are available for downloading. From foundational Python concepts to the intricacies of data visualization, this book is ideal for Python practitioners, data scientists, and anyone in the field of data analytics looking to enhance their storytelling with data through visuals. It's also perfect for educators seeking material for teaching advanced data visualization techniques. FEATURES Explores cutting-edge techniques using ChatGPT/GPT-4 in harmony with Python for generating visuals that tell more compelling data stories Contains detailed tutorials that guide you through the creation of complex visuals Tackles actual data scenarios and builds your expertise as you apply learned concepts to real datasets Features data manipulation and cleaning with Pandas to prepare flawless datasets ready for visualization Includes companion files with source code, data sets, and figures

Big Data Analysis with Python

Big Data Analysis with Python
Title Big Data Analysis with Python PDF eBook
Author Ivan Marin
Publisher Packt Publishing Ltd
Pages 276
Release 2019-04-10
Genre Computers
ISBN 1789950732

Download Big Data Analysis with Python Book in PDF, Epub and Kindle

Get to grips with processing large volumes of data and presenting it as engaging, interactive insights using Spark and Python. Key FeaturesGet a hands-on, fast-paced introduction to the Python data science stackExplore ways to create useful metrics and statistics from large datasetsCreate detailed analysis reports with real-world dataBook Description Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control this data avalanche for you. With this book, you'll learn practical techniques to aggregate data into useful dimensions for posterior analysis, extract statistical measurements, and transform datasets into features for other systems. The book begins with an introduction to data manipulation in Python using pandas. You'll then get familiar with statistical analysis and plotting techniques. With multiple hands-on activities in store, you'll be able to analyze data that is distributed on several computers by using Dask. As you progress, you'll study how to aggregate data for plots when the entire data cannot be accommodated in memory. You'll also explore Hadoop (HDFS and YARN), which will help you tackle larger datasets. The book also covers Spark and explains how it interacts with other tools. By the end of this book, you'll be able to bootstrap your own Python environment, process large files, and manipulate data to generate statistics, metrics, and graphs. What you will learnUse Python to read and transform data into different formatsGenerate basic statistics and metrics using data on diskWork with computing tasks distributed over a clusterConvert data from various sources into storage or querying formatsPrepare data for statistical analysis, visualization, and machine learningPresent data in the form of effective visualsWho this book is for Big Data Analysis with Python is designed for Python developers, data analysts, and data scientists who want to get hands-on with methods to control data and transform it into impactful insights. Basic knowledge of statistical measurements and relational databases will help you to understand various concepts explained in this book.

IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook
Title IPython Interactive Computing and Visualization Cookbook PDF eBook
Author Cyrille Rossant
Publisher Packt Publishing Ltd
Pages 899
Release 2014-09-25
Genre Computers
ISBN 178328482X

Download IPython Interactive Computing and Visualization Cookbook Book in PDF, Epub and Kindle

Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.