Statistical Design - Chemometrics

Statistical Design - Chemometrics
Title Statistical Design - Chemometrics PDF eBook
Author Roy E Bruns
Publisher Elsevier
Pages 423
Release 2006-01-27
Genre Education
ISBN 0080462138

Download Statistical Design - Chemometrics Book in PDF, Epub and Kindle

Statistical Design-Chemometrics is applicable to researchers and professionals who wish to perform experiments in chemometrics and carry out analysis of the data in the most efficient way possible. The language is clear, direct and oriented towards real applications. The book provides 106 exercises with answers to accompany the study of theoretical principles. Forty two cases studies with real data are presented showing designs and the complete statistical analyses for problems in the areas chromatography, electroanalytical and electrochemistry, calibration, polymers, gas adsorption, semiconductors, food technology, biotechnology, photochemistry, catalysis, detergents and ceramics. These studies serve as a guide that the reader can use to perform correct data analyses.-Provides 42 case studies containing step-by-step descriptions of calculational procedures that can be applied to most real optimization problems-Contains 106 theoretical exercises to test individual learning and to provide classroom exercises and material for written tests and exams-Written in a language that facilitates learning for physical and biological scientists and engineers-Takes a practical approach for those involved in industrial optimization problems

Data-Driven Science and Engineering

Data-Driven Science and Engineering
Title Data-Driven Science and Engineering PDF eBook
Author Steven L. Brunton
Publisher Cambridge University Press
Pages 615
Release 2022-05-05
Genre Computers
ISBN 1009098489

Download Data-Driven Science and Engineering Book in PDF, Epub and Kindle

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Science and Technology Data Book

Science and Technology Data Book
Title Science and Technology Data Book PDF eBook
Author
Publisher
Pages 62
Release 1987
Genre Electronic journals
ISBN

Download Science and Technology Data Book Book in PDF, Epub and Kindle

Data Fusion Methodology and Applications

Data Fusion Methodology and Applications
Title Data Fusion Methodology and Applications PDF eBook
Author Marina Cocchi
Publisher Elsevier
Pages 398
Release 2019-05-11
Genre Science
ISBN 0444639853

Download Data Fusion Methodology and Applications Book in PDF, Epub and Kindle

Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales. - Presents the first comprehensive textbook on data fusion, focusing on all aspects of data-driven discovery - Includes comprehensible, theoretical chapters written for large and diverse audiences - Provides a wealth of selected application to the topics included

Data Science

Data Science
Title Data Science PDF eBook
Author John D. Kelleher
Publisher MIT Press
Pages 282
Release 2018-04-13
Genre Computers
ISBN 0262535432

Download Data Science Book in PDF, Epub and Kindle

A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.

Hyperspectral Imaging

Hyperspectral Imaging
Title Hyperspectral Imaging PDF eBook
Author
Publisher Elsevier
Pages 802
Release 2019-09-29
Genre Science
ISBN 0444639780

Download Hyperspectral Imaging Book in PDF, Epub and Kindle

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments

digitalSTS

digitalSTS
Title digitalSTS PDF eBook
Author Janet Vertesi
Publisher Princeton University Press
Pages 568
Release 2019-05-07
Genre Science
ISBN 0691187088

Download digitalSTS Book in PDF, Epub and Kindle

New perspectives on digital scholarship that speak to today's computational realities Scholars across the humanities, social sciences, and information sciences are grappling with how best to study virtual environments, use computational tools in their research, and engage audiences with their results. Classic work in science and technology studies (STS) has played a central role in how these fields analyze digital technologies, but many of its key examples do not speak to today’s computational realities. This groundbreaking collection brings together a world-class group of contributors to refresh the canon for contemporary digital scholarship. In twenty-five pioneering and incisive essays, this unique digital field guide offers innovative new approaches to digital scholarship, the design of digital tools and objects, and the deployment of critically grounded technologies for analysis and discovery. Contributors cover a broad range of topics, including software development, hackathons, digitized objects, diversity in the tech sector, and distributed scientific collaborations. They discuss methodological considerations of social networks and data analysis, design projects that can translate STS concepts into durable scientific work, and much more. Featuring a concise introduction by Janet Vertesi and David Ribes and accompanied by an interactive microsite, this book provides new perspectives on digital scholarship that will shape the agenda for tomorrow’s generation of STS researchers and practitioners.