Schubert Calculus and Its Applications in Combinatorics and Representation Theory

Schubert Calculus and Its Applications in Combinatorics and Representation Theory
Title Schubert Calculus and Its Applications in Combinatorics and Representation Theory PDF eBook
Author Jianxun Hu
Publisher Springer Nature
Pages 367
Release 2020-10-24
Genre Mathematics
ISBN 9811574510

Download Schubert Calculus and Its Applications in Combinatorics and Representation Theory Book in PDF, Epub and Kindle

This book gathers research papers and surveys on the latest advances in Schubert Calculus, presented at the International Festival in Schubert Calculus, held in Guangzhou, China on November 6–10, 2017. With roots in enumerative geometry and Hilbert's 15th problem, modern Schubert Calculus studies classical and quantum intersection rings on spaces with symmetries, such as flag manifolds. The presence of symmetries leads to particularly rich structures, and it connects Schubert Calculus to many branches of mathematics, including algebraic geometry, combinatorics, representation theory, and theoretical physics. For instance, the study of the quantum cohomology ring of a Grassmann manifold combines all these areas in an organic way. The book is useful for researchers and graduate students interested in Schubert Calculus, and more generally in the study of flag manifolds in relation to algebraic geometry, combinatorics, representation theory and mathematical physics.

Young Tableaux

Young Tableaux
Title Young Tableaux PDF eBook
Author William Fulton
Publisher Cambridge University Press
Pages 276
Release 1997
Genre Mathematics
ISBN 9780521567244

Download Young Tableaux Book in PDF, Epub and Kindle

Describes combinatorics involving Young tableaux and their uses in representation theory and algebraic geometry.

A Glimpse into Geometric Representation Theory

A Glimpse into Geometric Representation Theory
Title A Glimpse into Geometric Representation Theory PDF eBook
Author Mahir Bilen Can
Publisher American Mathematical Society
Pages 218
Release 2024-08-07
Genre Mathematics
ISBN 147047090X

Download A Glimpse into Geometric Representation Theory Book in PDF, Epub and Kindle

This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.

Recent Trends in Algebraic Combinatorics

Recent Trends in Algebraic Combinatorics
Title Recent Trends in Algebraic Combinatorics PDF eBook
Author Hélène Barcelo
Publisher Springer
Pages 0
Release 2019-01-31
Genre Mathematics
ISBN 9783030051402

Download Recent Trends in Algebraic Combinatorics Book in PDF, Epub and Kindle

This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.

k-Schur Functions and Affine Schubert Calculus

k-Schur Functions and Affine Schubert Calculus
Title k-Schur Functions and Affine Schubert Calculus PDF eBook
Author Thomas Lam
Publisher Springer
Pages 226
Release 2014-06-05
Genre Mathematics
ISBN 1493906828

Download k-Schur Functions and Affine Schubert Calculus Book in PDF, Epub and Kindle

This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field.

Singularities and Their Interaction with Geometry and Low Dimensional Topology

Singularities and Their Interaction with Geometry and Low Dimensional Topology
Title Singularities and Their Interaction with Geometry and Low Dimensional Topology PDF eBook
Author Javier Fernández de Bobadilla
Publisher Springer Nature
Pages 332
Release 2021-05-27
Genre Mathematics
ISBN 3030619583

Download Singularities and Their Interaction with Geometry and Low Dimensional Topology Book in PDF, Epub and Kindle

The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the “Némethi60: Geometry and Topology of Singularities” conference held at the Alfréd Rényi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor András Némethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.

Enumerative Combinatorics: Volume 2

Enumerative Combinatorics: Volume 2
Title Enumerative Combinatorics: Volume 2 PDF eBook
Author Richard P. Stanley
Publisher Cambridge University Press
Pages 527
Release 1999-01-13
Genre Mathematics
ISBN 1139810995

Download Enumerative Combinatorics: Volume 2 Book in PDF, Epub and Kindle

This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.