Schramm–Loewner Evolution
Title | Schramm–Loewner Evolution PDF eBook |
Author | Antti Kemppainen |
Publisher | Springer |
Pages | 151 |
Release | 2017-12-22 |
Genre | Science |
ISBN | 3319653296 |
This book is a short, but complete, introduction to the Loewner equation and the SLEs, which are a family of random fractal curves, as well as the relevant background in probability and complex analysis. The connection to statistical physics is also developed in the text in an example case. The book is based on a course (with the same title) lectured by the author. First three chapters are devoted to the background material, but at the same time, give the reader a good understanding on the overview on the subject and on some aspects of conformal invariance. The chapter on the Loewner equation develops in detail the connection of growing hulls and the differential equation satisfied by families of conformal maps. The Schramm–Loewner evolutions are defined and their basic properties are studied in the following chapter, and the regularity properties of random curves as well as scaling limits of discrete random curves are investigated in the final chapter. The book is aimed at graduate students or researchers who want to learn the subject fairly quickly.
Conformally Invariant Processes in the Plane
Title | Conformally Invariant Processes in the Plane PDF eBook |
Author | Gregory F. Lawler |
Publisher | American Mathematical Soc. |
Pages | 258 |
Release | 2008 |
Genre | Mathematics |
ISBN | 0821846248 |
Presents an introduction to the conformally invariant processes that appear as scaling limits. This book covers such topics as stochastic integration, and complex Brownian motion and measures derived from Brownian motion. It is suitable for those interested in random processes and their applications in theoretical physics.
Selected Works of Oded Schramm
Title | Selected Works of Oded Schramm PDF eBook |
Author | Itai Benjamini |
Publisher | Springer Science & Business Media |
Pages | 1199 |
Release | 2011-08-12 |
Genre | Mathematics |
ISBN | 1441996753 |
This volume is dedicated to the memory of the late Oded Schramm (1961-2008), distinguished mathematician. Throughout his career, Schramm made profound and beautiful contributions to mathematics that will have a lasting influence. In these two volumes, Editors Itai Benjamini and Olle Häggström have collected some of his papers, supplemented with three survey papers by Steffen Rohde, Häggström and Cristophe Garban that further elucidate his work. The papers within are a representative collection that shows the breadth, depth, enthusiasm and clarity of his work, with sections on Geometry, Noise Sensitivity, Random Walks and Graph Limits, Percolation, and finally Schramm-Loewner Evolution. An introduction by the Editors and a comprehensive bibliography of Schramm's publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects.
Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model
Title | Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model PDF eBook |
Author | Makoto Katori |
Publisher | Springer |
Pages | 149 |
Release | 2016-02-08 |
Genre | Science |
ISBN | 9811002754 |
The purpose of this book is to introduce two recent topics in mathematical physics and probability theory: the Schramm–Loewner evolution (SLE) and interacting particle systems related to random matrix theory. A typical example of the latter systems is Dyson's Brownian motion (BM) model. The SLE and Dyson's BM model may be considered as "children" of the Bessel process with parameter D, BES(D), and the SLE and Dyson's BM model as "grandchildren" of BM. In Chap. 1 the parenthood of BM in diffusion processes is clarified and BES(D) is defined for any D ≥ 1. Dependence of the BES(D) path on its initial value is represented by the Bessel flow. In Chap. 2 SLE is introduced as a complexification of BES(D). Rich mathematics and physics involved in SLE are due to the nontrivial dependence of the Bessel flow on D. From a result for the Bessel flow, Cardy's formula in Carleson's form is derived for SLE. In Chap. 3 Dyson's BM model with parameter β is introduced as a multivariate extension of BES(D) with the relation D = β + 1. The book concentrates on the case where β = 2 and calls this case simply the Dyson model.The Dyson model inherits the two aspects of BES(3); hence it has very strong solvability. That is, the process is proved to be determinantal in the sense that all spatio-temporal correlation functions are given by determinants, and all of them are controlled by a single function called the correlation kernel. From the determinantal structure of the Dyson model, the Tracy–Widom distribution is derived.
Non-Equilibrium Entropy and Irreversibility
Title | Non-Equilibrium Entropy and Irreversibility PDF eBook |
Author | C. Lindblad |
Publisher | Springer Science & Business Media |
Pages | 184 |
Release | 2001-11-30 |
Genre | Science |
ISBN | 9781402003202 |
The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems.
Vertex Algebras and Algebraic Curves
Title | Vertex Algebras and Algebraic Curves PDF eBook |
Author | Edward Frenkel |
Publisher | American Mathematical Soc. |
Pages | 418 |
Release | 2004-08-25 |
Genre | Mathematics |
ISBN | 0821836749 |
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Probability on Graphs
Title | Probability on Graphs PDF eBook |
Author | Geoffrey Grimmett |
Publisher | Cambridge University Press |
Pages | 279 |
Release | 2018-01-25 |
Genre | Mathematics |
ISBN | 1108542999 |
This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.