Scanning Auger Electron Microscopy
Title | Scanning Auger Electron Microscopy PDF eBook |
Author | Martin Prutton |
Publisher | John Wiley & Sons |
Pages | 384 |
Release | 2006-05-01 |
Genre | Technology & Engineering |
ISBN | 0470866780 |
This eagerly-awaited volume has been edited by two academic researchers with extensive and reputable experience in this field. Emphasis is given to the underlying science of the method of Auger microscopy, and its instrumental realization, the visualization and interpretation of the data in the sets of the images that form the output of the measurements and the methods used to quantify the images. Imaging artefacts in Auger microscopy and methods to correct them are also detailed. The authors describe the technique of Multi-Spectral Auger Microscopy (MULSAM) and demonstrate its advantages in mapping complex multi-component surfaces. The book concludes with an outlook for the future of Auger microscopy.
Scanning Electron Microscopy
Title | Scanning Electron Microscopy PDF eBook |
Author | Ludwig Reimer |
Publisher | Springer |
Pages | 538 |
Release | 2013-11-11 |
Genre | Science |
ISBN | 3540389679 |
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
Auger- and X-Ray Photoelectron Spectroscopy in Materials Science
Title | Auger- and X-Ray Photoelectron Spectroscopy in Materials Science PDF eBook |
Author | Siegfried Hofmann |
Publisher | Springer Science & Business Media |
Pages | 544 |
Release | 2012-10-25 |
Genre | Science |
ISBN | 3642273807 |
To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.
An Introduction to Surface Analysis by XPS and AES
Title | An Introduction to Surface Analysis by XPS and AES PDF eBook |
Author | John F. Watts |
Publisher | John Wiley & Sons |
Pages | 320 |
Release | 2019-08-27 |
Genre | Technology & Engineering |
ISBN | 1119417643 |
Provides a concise yet comprehensive introduction to XPS and AES techniques in surface analysis This accessible second edition of the bestselling book, An Introduction to Surface Analysis by XPS and AES, 2nd Edition explores the basic principles and applications of X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) techniques. It starts with an examination of the basic concepts of electron spectroscopy and electron spectrometer design, followed by a qualitative and quantitative interpretation of the electron spectrum. Chapters examine recent innovations in instrument design and key applications in metallurgy, biomaterials, and electronics. Practical and concise, it includes compositional depth profiling; multi-technique analysis; and everything about samples—including their handling, preparation, stability, and more. Topics discussed in more depth include peak fitting, energy loss background analysis, multi-technique analysis, and multi-technique profiling. The book finishes with chapters on applications of electron spectroscopy in materials science and the comparison of XPS and AES with other analytical techniques. Extensively revised and updated with new material on NAPXPS, twin anode monochromators, gas cluster ion sources, valence band spectra, hydrogen detection, and quantification Explores key spectroscopic techniques in surface analysis Provides descriptions of latest instruments and techniques Includes a detailed glossary of key surface analysis terms Features an extensive bibliography of key references and additional reading Uses a non-theoretical style to appeal to industrial surface analysis sectors An Introduction to Surface Analysis by XPS and AES, 2nd Edition is an excellent introductory text for undergraduates, first-year postgraduates, and industrial users of XPS and AES.
Electron Beam Analysis of Materials
Title | Electron Beam Analysis of Materials PDF eBook |
Author | M. H. Loretto |
Publisher | Springer Science & Business Media |
Pages | 218 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400955405 |
The examination of materials using electron beam techniques has developed continuously for over twenty years and there are now many different methods of extracting detailed structural and chemical information using electron beams. These techniques which include electron probe microanalysis, trans mission electron microscopy, Auger spectroscopy and scanning electron microscopy have, until recently, developed more or less independently of each other. Thus dedicated instruments designed to optimize the performance for a specific application have been available and correspondingly most of the available textbooks tend to have covered the theory and practice of an individual technique. There appears to be no doubt that dedicated instru ments taken together with the specialized textbooks will continue to be the appropriate approach for some problems. Nevertheless the underlying electron-specimen interactions are common to many techniques and in view of the fact that a range of hybrid instruments is now available it seems appropriate to provide a broad-based text for users of these electron beam facilities. The aim of the present book is therefore to provide, in a reasonably concise form, the material which will allow the practitioner of one or more of the individual techniques to appreciate and to make use of the type of information which can be obtained using other electron beam techniques.
Image Formation in Low-voltage Scanning Electron Microscopy
Title | Image Formation in Low-voltage Scanning Electron Microscopy PDF eBook |
Author | Ludwig Reimer |
Publisher | SPIE Press |
Pages | 162 |
Release | 1993 |
Genre | Science |
ISBN | 9780819412065 |
While most textbooks about scanning electron microscopy (SEM) cover the high-voltage range from 5-50 keV, this volume considers the special problems in low-voltage SEM and summarizes the differences between LVSEM and conventional SEM. Chapters cover the influence of lens aberrations and design on electron-probe formation; the effect of elastic and inelastic scattering processes on electron diffusion and electron range; charging and radiation damage effects; the dependence of SE yield and the backscattering coefficient on electron energy, surface tilt, and material as well as the angular and energy distributions; and types of image contrast and the differences between LVSEM and conventional SEM modes due to the influence of electron-specimen interactions.
Practical Materials Characterization
Title | Practical Materials Characterization PDF eBook |
Author | Mauro Sardela |
Publisher | Springer |
Pages | 242 |
Release | 2014-07-10 |
Genre | Technology & Engineering |
ISBN | 1461492815 |
Practical Materials Characterization covers the most common materials analysis techniques in a single volume. It stands as a quick reference for experienced users, as a learning tool for students, and as a guide for the understanding of typical data interpretation for anyone looking at results from a range of analytical techniques. The book includes analytical methods covering microstructural, surface, morphological, and optical characterization of materials with emphasis on microscopic structural, electronic, biological, and mechanical properties. Many examples in this volume cover cutting-edge technologies such as nanomaterials and life sciences.