Sampling, Approximation, and Signal Analysis
Title | Sampling, Approximation, and Signal Analysis PDF eBook |
Author | Stephen D. Casey |
Publisher | Springer Nature |
Pages | 580 |
Release | 2024-01-04 |
Genre | Mathematics |
ISBN | 3031411307 |
During his long and distinguished career, J. Rowland Higgins (1935-2020) made a substantial impact on many mathematical fields through his work on sampling theory, his deep knowledge of its history, and his service to the community. This volume is a tribute to his work and legacy, featuring chapters written by distinguished mathematicians that explore cutting-edge research in sampling, approximation, signal analysis, and other related areas. An introductory chapter provides a biography of Higgins that explores his rich and unique life, along with a bibliography of his papers; a brief history of the SampTA meetings – of which he was a Founding Member – is also included. The remaining articles are grouped into four sections – classical sampling, theoretical extensions, frame theory, and applications of sampling theory – and explore Higgins’ contributions to these areas, as well as some of the latest developments.
Sampling Theory in Fourier and Signal Analysis: Advanced Topics
Title | Sampling Theory in Fourier and Signal Analysis: Advanced Topics PDF eBook |
Author | J. R. Higgins |
Publisher | Oxford University Press |
Pages | 320 |
Release | 1999-11-25 |
Genre | Mathematics |
ISBN | 9780198534969 |
Volume 1 in this series laid the mathematical foundations of sampling theory; Volume 2 surveys the many applications of the theory both within mathematics and in other areas of science. Topics range over a wide variety of areas, and each application is given a modern treatment.
Modern Sampling Theory
Title | Modern Sampling Theory PDF eBook |
Author | John J. Benedetto |
Publisher | Springer Science & Business Media |
Pages | 448 |
Release | 2001-02-16 |
Genre | Mathematics |
ISBN | 9780817640231 |
Sampling is a fundamental topic in the engineering and physical sciences. This new edited book focuses on recent mathematical methods and theoretical developments, as well as some current central applications of the Classical Sampling Theorem. The Classical Sampling Theorem, which originated in the 19th century, is often associated with the names of Shannon, Kotelnikov, and Whittaker; and one of the features of this book is an English translation of the pioneering work in the 1930s by Kotelnikov, a Russian engineer. Following a technical overview and Kotelnikov's article, the book includes a wide and coherent range of mathematical ideas essential for modern sampling techniques. These ideas involve wavelets and frames, complex and abstract harmonic analysis, the Fast Fourier Transform (FFT), and special functions and eigenfunction expansions. Some of the applications addressed are tomography and medical imaging. Topics and features: • Relations between wavelet theory, the uncertainty principle, and sampling • Multidimensional non-uniform sampling theory and algorithms • The analysis of oscillatory behavior through sampling • Sampling techniques in deconvolution • The FFT for non-uniformly distributed data • Filter design and sampling • Sampling of noisy data for signal reconstruction • Finite dimensional models for oversampled filter banks • Sampling problems in MRI. Engineers and mathematicians working in wavelets, signal processing, and harmonic analysis, as well as scientists and engineers working on applications as varied as medical imaging and synthetic aperture radar, will find the book to be a modern and authoritative guide to sampling theory.
Independent Random Sampling Methods
Title | Independent Random Sampling Methods PDF eBook |
Author | Luca Martino |
Publisher | Springer |
Pages | 289 |
Release | 2018-03-31 |
Genre | Computers |
ISBN | 331972634X |
This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the links and interplay between ostensibly diverse techniques.
Harmonic Analysis and Applications
Title | Harmonic Analysis and Applications PDF eBook |
Author | John J. Benedetto |
Publisher | CRC Press |
Pages | 370 |
Release | 1996-07-29 |
Genre | Mathematics |
ISBN | 9780849378799 |
Harmonic analysis plays an essential role in understanding a host of engineering, mathematical, and scientific ideas. In Harmonic Analysis and Applications, the analysis and synthesis of functions in terms of harmonics is presented in such a way as to demonstrate the vitality, power, elegance, usefulness, and the intricacy and simplicity of the subject. This book is about classical harmonic analysis - a textbook suitable for students, and an essay and general reference suitable for mathematicians, physicists, and others who use harmonic analysis. Throughout the book, material is provided for an upper level undergraduate course in harmonic analysis and some of its applications. In addition, the advanced material in Harmonic Analysis and Applications is well-suited for graduate courses. The course is outlined in Prologue I. This course material is excellent, not only for students, but also for scientists, mathematicians, and engineers as a general reference. Chapter 1 covers the Fourier analysis of integrable and square integrable (finite energy) functions on R. Chapter 2 of the text covers distribution theory, emphasizing the theory's useful vantage point for dealing with problems and general concepts from engineering, physics, and mathematics. Chapter 3 deals with Fourier series, including the Fourier analysis of finite and infinite sequences, as well as functions defined on finite intervals. The mathematical presentation, insightful perspectives, and numerous well-chosen examples and exercises in Harmonic Analysis and Applications make this book well worth having in your collection.
Nonuniform Sampling
Title | Nonuniform Sampling PDF eBook |
Author | Farokh Marvasti |
Publisher | Springer Science & Business Media |
Pages | 938 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1461512298 |
Our understanding of nature is often through nonuniform observations in space or time. In space, one normally observes the important features of an object, such as edges. The less important features are interpolated. History is a collection of important events that are nonuniformly spaced in time. Historians infer between events (interpolation) and politicians and stock market analysts forecast the future from past and present events (extrapolation). The 20 chapters of Nonuniform Sampling: Theory and Practice contain contributions by leading researchers in nonuniform and Shannon sampling, zero crossing, and interpolation theory. Its practical applications include NMR, seismology, speech and image coding, modulation and coding, optimal content, array processing, and digital filter design. It has a tutorial outlook for practising engineers and advanced students in science, engineering, and mathematics. It is also a useful reference for scientists and engineers working in the areas of medical imaging, geophysics, astronomy, biomedical engineering, computer graphics, digital filter design, speech and video processing, and phased array radar.
Foundations of Signal Processing
Title | Foundations of Signal Processing PDF eBook |
Author | Martin Vetterli |
Publisher | Cambridge University Press |
Pages | 745 |
Release | 2014-09-04 |
Genre | Technology & Engineering |
ISBN | 1139916572 |
This comprehensive and engaging textbook introduces the basic principles and techniques of signal processing, from the fundamental ideas of signals and systems theory to real-world applications. Students are introduced to the powerful foundations of modern signal processing, including the basic geometry of Hilbert space, the mathematics of Fourier transforms, and essentials of sampling, interpolation, approximation and compression The authors discuss real-world issues and hurdles to using these tools, and ways of adapting them to overcome problems of finiteness and localization, the limitations of uncertainty, and computational costs. It includes over 160 homework problems and over 220 worked examples, specifically designed to test and expand students' understanding of the fundamentals of signal processing, and is accompanied by extensive online materials designed to aid learning, including Mathematica® resources and interactive demonstrations.